Skip to main content

Additive manufacturing of embedded carbon nanocomposite structures with multi-material digital light processing (MMDLP)

Abstract

Additive manufacturing (AM) has become an increasingly powerful technique for fabricating complex three-dimensional micro-architectures for a wide variety of applications. Despite the multitude of AM techniques that support single material printing at progressively higher throughput, larger build size, and finer spatial resolution, multi-material printing of interlaced structures with one of the materials being a filled composite has not been demonstrated. This work aims to demonstrate the technical feasibility of fabricating such heterogeneous structures using a custom-built multi-material digital light processing (MMDLP) 3D printer. The printer was equipped with two resin dispensers and an air-jet that enable fast exchange between the resins—one of which was filled with carbon nanotubes (CNTs) up to 0.25%. The inclusion of CNTs reduced the cure depth of the resins, but significantly lowered the critical exposure required to initiate the photopolymerization. This information was successfully used to select appropriate process parameters for printing complex CNT-filled multi-material structures.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

© lattice structure, (b) simple cubic lattice structure with a carbon nanocomposite rod embedded in the middle, (c) 180 µm × 180 µm base, 4 mm height square rods with a carbon nanocomposite rod in the middle. Picture inserted on the right shows a close-up image of a single rod.

References

  1. 1.

    H. Lipson, M. Kurman, Fabricated: The New World of 3D Printing (Wiley, New York, 2013).

    Google Scholar 

  2. 2.

    H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manaufacturing methods and modeling approaches: a critical review. Int. J. Adv. Manuf. Technol. 83, 389–405 (2016)

    Article  Google Scholar 

  3. 3.

    S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    F. Li, N.P. Macdonald, R.M. Guijt, M.C. Breadmore, Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip 19, 35–49 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    A. Kashirina, Y. Yao, Y. Liu, J. Leng, Biopolymers as bone substitutes: a review. Biomater. Sci. 7, 3961–3983 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    D. Chen, X. Zheng, Multi-material additive manufacturing of metamaterials with giant tailorable negative Poisson’s ratios. Sci. Rep. 8, 1–8 (2018)

    Google Scholar 

  8. 8.

    R. Hensleigh et al., Charge-programmed three-dimensional printing for multi-material electronic devices. Nat. Electron. 3, 216–224 (2020)

    CAS  Article  Google Scholar 

  9. 9.

    M. Vaezi, S. Chianrabutra, B. Mellor, S. Yang, Multiple material additive manufacturing: Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virtual Phys. Prototyp. 8, 19–50 (2013)

    Article  Google Scholar 

  10. 10.

    M. Nadgorny, A. Ameli, Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Appl. Mater. Interfaces 10, 17489–17507 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    M. Layani, X. Wang, S. Magdassi, Novel materials for 3D printing by photopolymerization. Adv. Mater. 30, 1–7 (2018)

    Article  CAS  Google Scholar 

  12. 12.

    X. Zheng et al., Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012)

    Article  CAS  Google Scholar 

  13. 13.

    Q. Ge et al., Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 6, 31110 (2016)

    Article  CAS  Google Scholar 

  14. 14.

    C. Sun, N. Fang, D.M. Wu, X. Zhang, Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators A Phys. 121, 113–120 (2005)

    CAS  Article  Google Scholar 

  15. 15.

    X. Zheng et al., Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    B.E. Kelly et al., Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    D. Espinosa-Hoyos et al., Engineered 3D-printed artificial axons. Sci. Rep. 8, 478 (2018)

    Article  CAS  Google Scholar 

  18. 18.

    Y. Yang et al., 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 30, 1704912 (2018)

    Article  CAS  Google Scholar 

  19. 19.

    B. Zhang, K. Kowsari, A. Serjouei, M.L. Dunn, Q. Ge, Reprocessable thermosets for sustainable three-dimensional printing. Nat. Commun. 9, 1831 (2018)

    Article  CAS  Google Scholar 

  20. 20.

    J.R. Tumbleston et al., Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    F. Kotz et al., Three-dimensional printing of transparent fused silica glass. Nature 544, 337–339 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    Z. Chi, C. Yong, Y. Zhigang, K. Behrokh, Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp. J. 19, 153–165 (2013)

    Article  Google Scholar 

  23. 23.

    J.-W. Choi, H.-C. Kim, R. Wicker, Multi-material stereolithography. J. Mater. Process. Technol. 211, 318–328 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    C. Zhou, H. Ye, F. Zhang, A novel low-cost stereolithography process based on vector scanning and mask projection for high-accuracy, high-speed, high-throughput, and large-area fabrication. J. Comput. Inf. Sci. Eng. 15, 10 (2015)

    Article  Google Scholar 

  25. 25.

    M.M. Emami, F. Barazandeh, F. Yaghmaie, Scanning-projection based stereolithography: method and structure. Sens. Actuators A Phys. 218, 116–124 (2014)

    CAS  Article  Google Scholar 

  26. 26.

    X. Zheng et al., Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    M. Shusteff et al., One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, 5496 (2017)

    Article  CAS  Google Scholar 

  28. 28.

    Senvol database on industrial additive manufacturing machines and materials. http://senvol.com/database/.

  29. 29.

    M. Evan, L. Hod, Fab@Home: the personal desktop fabricator kit. Rapid Prototyp. J. 13, 245–255 (2007)

    Article  Google Scholar 

  30. 30.

    Aniwaa online platform. https://www.aniwaa.com/comparison/3d-printers/.

  31. 31.

    Z. Xu et al., Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices. Addit. Manuf. 32, 101106 (2020)

    CAS  Google Scholar 

  32. 32.

    G. Gonzalez et al., Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer (Guildf). 109, 246–253 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    J.H. Sandoval, K.F. Soto, L.E. Murr, R.B. Wicker, Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nanotubes for stereolithography layered manufacturing. J. Mater. Sci. 42, 156–165 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    Q. Mu et al., Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 18, 74–83 (2017)

    CAS  Google Scholar 

  35. 35.

    Y. Han, F. Wang, H. Wang, X. Jiao, D. Chen, High-strength boehmite-acrylate composites for 3D printing: reinforced filler-matrix interactions. Compos. Sci. Technol. 154, 104–109 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    E. Shukrun, I. Cooperstein, S. Magdassi, 3D-printed organic-ceramic complex hybrid structures with high silica content. Adv. Sci. 5, 1800061 (2018)

    Article  CAS  Google Scholar 

  37. 37.

    Z. Weng, Y. Zhou, W. Lin, T. Senthil, L. Wu, Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Compos. Part A Appl. Sci. Manuf. 88, 234–242 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    Z. Ji, C. Yan, B. Yu, X. Wang, F. Zhou, Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Adv. Mater. Interfaces 4, 1700629 (2017)

    Article  CAS  Google Scholar 

  39. 39.

    A. Chiappone et al., Study of graphene oxide-based 3D printable composites: effect of the in situ reduction. Compos. Part B Eng. 124, 9–15 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    C. Wang et al., A general method to synthesize and sinter bulk ceramics in seconds. Science 368, 521–526 (2020)

    CAS  Article  Google Scholar 

  41. 41.

    K. Kowsari, S. Akbari, D. Wang, N.X. Fang, Q. Ge, High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Print. Addit. Manuf. 5, 185–193 (2018)

    Article  Google Scholar 

  42. 42.

    F.H. Gojny et al., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer (Guildf). 47, 2036–2045 (2006)

    CAS  Article  Google Scholar 

  43. 43.

    J. Qian et al., Effect of aspect ratio of multi-wall carbon nanotubes on the dispersion in ethylene-α-octene block copolymer and the properties of the nanocomposites. J. Polym. Res. 26, 1–11 (2019)

    CAS  Article  Google Scholar 

  44. 44.

    K. Kowsari et al., Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Addit. Manuf. 24, 627–638 (2018)

    CAS  Google Scholar 

  45. 45.

    P. Gandhi, K. Bhole, 3D microfabrication using bulk lithography. ASME 2011 Int. Mech. Eng. Congr. Expo. IMECE 11, 393–399 (2011)

    Article  Google Scholar 

  46. 46.

    P.F. Jacobs, Lasers for Rapid Prototyping & Manufacturing, in Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. (Society of Manufacturing Engineers, Southfield, 1992)

    Google Scholar 

  47. 47.

    M. Sangermano, F. Marino, N. Reuel, M.S. Strano, Semiconducting single-walled carbon nanotubes as radical photoinitiators. Macromol. Chem. Phys. 212, 1469–1473 (2011)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. IIP-#1822157 (Phase I IUCRC at University of Connecticut: Center for Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D)) and from the SHAP3D I/UCRC Members: Akita Innovations, Boeing Company, U.S. Army CCDC Armaments Center, U.S. Army CCDC Soldier Center, Desktop Metal, HP Inc, Hutchinson, Integrity Industrial Ink Jet Integration LLC, Karagozian & Case, Raytheon Technologies, Stratasys Ltd, and Triton Systems Inc. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the sponsors. The authors would like to thank the industry advisory board members, Dr. Patrick Kinlen, John Sailhamer, Dr. Scott Eastman, and Dr. Adam Pawloski for their technical inputs and Joseph Luciani for assistance with printing the air distributor.

Author information

Affiliations

Authors

Contributions

SK and S-YC performed the experiments and data analysis. KK contributed to the initial construction of the MMDLP 3D printer. The graphical user interface was developed by AC. KK and AWKM were responsible for the conceptualization, funding acquisition, and project administration. SK was the primary author of the manuscript, which was reviewed and edited by all the co-authors.

Corresponding author

Correspondence to Anson W. K. Ma.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2752 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Chang, SY., Costa, A. et al. Additive manufacturing of embedded carbon nanocomposite structures with multi-material digital light processing (MMDLP). Journal of Materials Research (2021). https://doi.org/10.1557/s43578-021-00224-3

Download citation

Keywords

  • Heterogeneous
  • Composite
  • Additive manufacturing