Skip to main content

Advertisement

Log in

A Z-scheme iron-based hollow microsphere with enhanced photocatalytic performance for tetracycline degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Photocatalytic oxidation has been considered as a potential method for elimination of organic contaminants with low energy consumption. Photodegradation performance is subject to some factors: bandgap, band-edge positions and carrier separation efficiency. Z-scheme heterojunction system can improve photocatalytic performance through optimizing these factors. Thus, a Z-scheme α-Fe2O3/g-C3N4 hollow microsphere was obtained via controlled crosslinking and hydrolysis process (uniform dispersion of two components: through crosslinking; hollow structure: from self-sacrifice of glucose). Numerous constructed pores are beneficial for tetracycline (TC) to adsorb on photocatalysts (7.9 mg/L), which further accelerates TC degradation process. TC degradation rate increased to 67% over α-Fe2O3/g-C3N4-4 (g-C3N4: 48%, α-Fe2O3: 44%) after 2 h irradiation, which results from the quick capture and separation of photogenerated electron–hole pairs and the oxidation and reduction abilities of photocatalysts. This work presents an insight into promoting degradation efficiency of antibiotics and simultaneously reducing photocatalyst cost.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2
Scheme 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review. Environ. Chem. Lett. 11, 209–227 (2013)

    Article  CAS  Google Scholar 

  2. H. Chen, X. Wang, W. Bi, Y. Wu, W. Dong, Photodegradation of carbamazepine with BiOCl/Fe3O4 catalyst under simulated solar light irradiation. J. Colloid Interface Sci. 502, 89–99 (2017)

    Article  CAS  Google Scholar 

  3. B. Luo, D. Xu, D. Li, G. Wu, M. Wu, W. Shi, M. Chen, Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Appl. Mater. Int. 7, 17061–17069 (2015)

    Article  CAS  Google Scholar 

  4. B. Luo, M. Chen, Z. Zhang, J. Xu, D. Li, D. Xu, W. Shi, Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme g-C3N4/Bi3TaO7 nanocomposite photocatalyst. Dalton Trans. 46, 8431–8438 (2017)

    Article  CAS  Google Scholar 

  5. P.V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv. 5, 40552–40577 (2015)

    Article  CAS  Google Scholar 

  6. S. Zuo, X. Jin, X. Wang, Y. Lu, Q. Zhu, J. Wang, W. Liu, Y. Du, J. Wang, andwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Appl. Catal. B-Environ. 282, 119551 (2021s)

    Article  CAS  Google Scholar 

  7. T. Shen, W. Su, Q. Yang, J. Ni, S. Tong, Synergetic mechanism for basic and acid sites of MgMxOy (M = Fe, Mn) double oxides in catalytic ozonation of p-hydroxybenzoic acid and acetic acid. Appl. Catal. B-Environ. 279, 119346 (2020)

    Article  CAS  Google Scholar 

  8. W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin, G.W. Huber, Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 8, 5533–5541 (2018)

    Article  CAS  Google Scholar 

  9. G. Zhang, Q. Ji, Z. Wu, G. Wang, H. Liu, J. Qu, J. Li, Facile “Spot-Heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition. Adv. Funct. Mater. 28, 1706462 (2018)

    Article  CAS  Google Scholar 

  10. X. Qu, X. Zhao, M. Liu, Z. Gao, D. Yang, L. Shi, Y. Tang, H. Song, BiOCl/TiO2 composite photocatalysts synthesized by the sol–gel method for enhanced visible-light catalytic activity toward methyl orange. J. Mater. Res. 35, 3067–3078 (2020)

    Article  CAS  Google Scholar 

  11. S. Wu, Y. Xie, X. Zhang, Z. Huang, Y. Liu, M. Fang, X. Wu, X. Min, In situ synthesis of adsorptive β-Bi2O3/BiOBr photocatalyst with enhanced degradation efficiency. J. Mater. Res. 34, 3450–3461 (2019)

    Article  CAS  Google Scholar 

  12. Z. Huang, J. Zhou, Y. Zhao, H. Cheng, G. Lu, A.W. Morawski, Y. Yu: Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00117-5

    Google Scholar 

  13. J. Hu, W. Fu, F. Ni, X. Zhang, C. Yang, J. Sang, An integrated process for the advanced treatment of hypersaline petrochemical wastewater: a pilot study. Water Res. 182, 116019 (2020)

    Article  CAS  Google Scholar 

  14. Y. Wang, O. Wild, X. Chen, Q. Wu, M. Gao, H. Chen, Y. Qi, Z. Wang, Health impacts of long-term ozone exposure in China over 2013–2017. Environ. Int. 144, 106030 (2020)

    Article  CAS  Google Scholar 

  15. L. He, L. Jing, Y. Luan, L. Wang, H. Fu, Enhanced visible activities of α-Fe2O3 by coupling N-doped graphene and mechanism insight. ACS Catal. 4, 990–998 (2014)

    Article  CAS  Google Scholar 

  16. R. Capita, C. Alonso-Calleja, Antibiotic-resistant bacteria: a challenge for the food industry. Crit. Rev. Food Sci. Nutr. 53, 11–48 (2013)

    Article  CAS  Google Scholar 

  17. X. Zhang, C. Li, J. Liang, J. Wang, J. Zhang, X. Chen, F. Wang, R. Li, Self-templated constructing of heterophase junction into hierarchical porous structure of semiconductors for promoting photogenerated charge separation. ChemCatChem 12, 1212–1219 (2020)

    Article  CAS  Google Scholar 

  18. T. Xiao, Z. Tang, Y. Yang, L. Tang, Y. Zhou, Z. Zou, In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl. Catal. B-Environ. 220, 417–428 (2018)

    Article  CAS  Google Scholar 

  19. Y. Yang, Z. Zeng, C. Zhang, D. Huang, G. Zeng, R. Xiao, C. Lai, C. Zhou, H. Guo, W. Xue, M. Cheng, W. Wang, J. Wang, Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight. Chem. Eng. J. 349, 808–821 (2018)

    Article  CAS  Google Scholar 

  20. R.-H. Zhou, Z.-H. Wei, Y.-Y. Li, Z.-J. Li, H.-C. Yao, Construction of visible light–responsive Z-scheme CdS/BiOI photocatalyst with enhanced photocatalytic CO2 reduction activity. J. Mater. Res. 34, 3907–3917 (2019)

    Article  CAS  Google Scholar 

  21. L. Xue, F. An, Y. Yang, Y. Ma, Synthesis of N-TiO2/BiOI/RGO composites with significantly enhanced visible light photocatalytic activity. J. Mater. Res. 35, 153–161 (2020)

    Article  CAS  Google Scholar 

  22. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  23. C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian, C. Zhou, C. Zhang, Y. Li, H. Li, GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J. Mater. Res. 35, 1307–1315 (2020)

    Article  CAS  Google Scholar 

  24. Y. Duan, M.-L. Gou, Y. Guo, J. Cai, W. Song, Z. Liu, E. Zhou, In situ hydrothermal synthesis of TiO2–RGO nanocomposites for 4-nitrophenol degradation under sunlight irradiation. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00154-0

    Article  Google Scholar 

  25. Y. Geng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Appl. Catal. B-Environ. 280, 119409 (2021)

    Article  CAS  Google Scholar 

  26. Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan, W. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl. Catal. B-Environ. 180, 663–673 (2016)

    Article  CAS  Google Scholar 

  27. Y. Chen, W. Lu, H. Shen, Y. Gu, T. Xu, Z. Zhu, G. Wang, W. Chen, Solar-driven efficient degradation of emerging contaminants by g-C3N4-shielding polyester fiber/TiO2 composites. Appl. Catal. B-Environ. 258, 117960 (2019)

    Article  CAS  Google Scholar 

  28. Q. Huo, X. Qi, J. Li, G. Liu, Y. Ning, X. Zhang, B. Zhang, Y. Fu, S. Liu, Preparation of a direct Z-scheme α-Fe2O3/MIL-101(Cr) hybrid for degradation of carbamazepine under visible light irradiation. Appl. Catal. B-Environ. 255, 117751 (2019)

    Article  CAS  Google Scholar 

  29. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, n-Doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119–2125 (2011s)

    Article  CAS  Google Scholar 

  30. W. Xie, S. Zhang, F. Pan, S. Chen, L. Zhong, J. Wang, X. Pei, Nanomaterial-based ROS-mediated strategies for combating bacteria and biofilms. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00134-4

    Article  Google Scholar 

  31. H.U. Rasheed, X. Lv, W. Wei, D.K. Sam, W. Zhu, Highly efficient photocatalytic degradation of the tetracycline hydrochloride on the α-Fe2O3@CN composite under the visible light. J. Environ. Chem. Eng. 7, 103322 (2019)

    Article  CAS  Google Scholar 

  32. M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 135, 7118–7121 (2013)

    Article  CAS  Google Scholar 

  33. Y. Sun, S. Gao, F. Lei, C. Xiao, Y. Xie, Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. Acc. Chem. Res. 48, 3–12 (2015)

    Article  CAS  Google Scholar 

  34. O. Alduhaish, M. Ubaidullah, A.M. Al-Enizi, N. Alhokbany, S.M. Alshehri, J. Ahmed, Facile synthesis of mesoporous α-Fe2O3@g-C3N4-NCs for efficient bifunctional electro-catalytic activity (OER/ORR). Sci. Rep. 9, 14139 (2019)

    Article  CAS  Google Scholar 

  35. Y. Wu, J. Ward-Bond, D. Li, S. Zhang, J. Shi, Z. Jiang, g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catal. 8, 5664–5674 (2018)

    Article  CAS  Google Scholar 

  36. L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Well-dispersed Fe2O3 nanoparticles on g-C3N4 for efficient and stable photo-Fenton photocatalysis under visible-light irradiation. Eur. J. Inorg. Chem. 2016, 5387–5392 (2016)

    Article  CAS  Google Scholar 

  37. X. Zhang, X. Zhang, J. Li, J. Sun, J. Bian, J. Wang, Y. Qu, R. Yan, C. Qin, L. Jing, Exceptional visible-light activities of g-C3N4 nanosheets dependent on the unexpected synergistic effects of prolonging charge lifetime and catalyzing H2 evolution with H2O. Appl. Catal. B-Environ. 237, 50–58 (2018)

    Article  CAS  Google Scholar 

  38. A.M. Manoj, L.R. Viannie, C.K. Subramaniam, N.A.N. Raj, G. Manivasagam, ingle-step hydrothermal synthesis of nitrogen-doped ZnO nanostructures and an insight into its electrochemical properties. J. Mater. Res. 36, 350–360 (2021s)

    Article  Google Scholar 

  39. B. Zhu, G. Xu, X. Li, Z. Wang, J. Lv, X. Shu, J. Huang, Z. Zheng, Y. Wu, Ultrathin porous g-CN nanosheets fabricated by direct calcination of pre-treated melamine for enhanced photocatalytic performance. J. Mater. Res. 34, 3462–3473 (2019)

    Article  CAS  Google Scholar 

  40. Q. Shen, C. Wu, Z. You, F. Huang, J. Sheng, F. Zhang, D. Cheng, H. Yang, g-C3N4 nanoparticle@porous g-C3N4 composite photocatalytic materials with significantly enhanced photo-generated carrier separation efficiency. J. Mater. Res. 35, 2148–2157 (2020)

    Article  CAS  Google Scholar 

  41. L. Peng, Z.-W. Li, R.-R. Zheng, H. Yu, X.-T. Dong, Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity. J. Mater. Res. 34, 1785–1794 (2019)

    Article  CAS  Google Scholar 

  42. R. Zheng, F. Lu, H. Yang, Y. Gao, Amorphous FeOOH quantum dots decorated on g-C3N4 nanosheets for high-performance energy storage electrodes. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00115-7

    Article  Google Scholar 

  43. Y. Li, M. Zhou, B. Cheng, Y. Shao, Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 56, 1–17 (2020)

    Article  Google Scholar 

  44. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  45. L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 6, 3921–3931 (2016)

    Article  CAS  Google Scholar 

  46. J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398–14401 (2011)

    Article  CAS  Google Scholar 

  47. B.V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chem. Eur. J. 13, 4969–4980 (2007)

    Article  CAS  Google Scholar 

  48. M.J. Bojdys, J.-O. Müller, M. Antonietti, A. Thomas, Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14, 8177–8182 (2008)

    Article  CAS  Google Scholar 

  49. X. Sun, Y. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43, 597–601 (2004)

    Article  CAS  Google Scholar 

  50. W. Ren, D. Liu, C. Sun, X. Yao, J. Tan, C. Wang, K. Zhao, X. Wang, Q. Li, L. Mai, Nonhierarchical heterostructured Fe2O3/Mn2O3 porous hollow spheres for enhanced lithium storage. Small 14, 1800659 (2018)

    Article  CAS  Google Scholar 

  51. X. Meng, Q. Xia, J. Yue, X. Zhu, Q. Guo, J. Zhu, X. Hui, Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv. Funct. Mater. 29, 1807377–1807377 (2019)

    Article  CAS  Google Scholar 

  52. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  53. W. Wang, Q. Zhu, F. Qin, Q. Dai, X. Wang, Fe doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid. Chem. Eng. J. 333, 226–239 (2018)

    Article  CAS  Google Scholar 

  54. L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A-Gen. 409–410, 215–222 (2011)

    Article  CAS  Google Scholar 

  55. Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 30, 1706108 (2018)

    Article  CAS  Google Scholar 

  56. M.Y. Leiw, G.H. Guai, X. Wang, M.S. Tse, C.M. Ng, O.K. Tan, Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3−δ metal oxide. J. Hazard. Mater. 260, 1–8 (2013)

    Article  CAS  Google Scholar 

  57. L. Wang, Y. Yao, Z. Zhang, L. Sun, W. Lu, W. Chen, H. Chen, Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation. Chem. Eng. J. 251, 348–354 (2014)

    Article  CAS  Google Scholar 

  58. W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe(III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of Bisphenol A. Environ. Sci. Technol. 47, 1952–1959 (2013)

    Article  CAS  Google Scholar 

  59. H. Huang, K. Xiao, N. Tian, F. Dong, T. Zhang, X. Du, Y. Zhang, Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A. 5, 17452–17463 (2017)

    Article  CAS  Google Scholar 

  60. J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater. 280, 713–722 (2014)

    Article  CAS  Google Scholar 

  61. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  62. J. Niu, S. Ding, L. Zhang, J. Zhao, C. Feng, Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment. Chemosphere 93, 1–8 (2013)

    Article  CAS  Google Scholar 

  63. Y. Fu, L. Peng, Q. Zeng, Y. Yang, H. Song, J. Shao, S. Liu, J. Gu, High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron. Chem. Eng. J. 270, 631–640 (2015)

    Article  CAS  Google Scholar 

  64. T. Wang, W. Quan, D. Jiang, L. Chen, D. Li, S. Meng, M. Chen, Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity. Chem. Eng. J. 300, 280–290 (2016)

    Article  CAS  Google Scholar 

  65. M. Nie, Y. Li, J. He, C. Xie, Z. Wu, B. Sun, K. Zhang, L. Kong, J. Liu, Degradation of tetracycline in water using Fe3O4 nanospheres as Fenton-like catalysts: kinetics, mechanisms and pathways. New J. Chem. 44, 2847–2857 (2020)

    Article  CAS  Google Scholar 

  66. C. Lai, F. Xu, M. Zhang, B. Li, S. Liu, H. Yi, L. Li, L. Qin, X. Liu, Y. Fu, N. An, H. Yang, X. Huo, X. Yang, H. Yan, Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: photodegradation of tetracycline and photocatalytic mechanism. J. Colloid Interface Sci. 588, 283–294 (2021)

    Article  CAS  Google Scholar 

  67. P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014)

    Article  CAS  Google Scholar 

  68. S. Hu, W. Yang, N. Li, H. Wang, J. Yang, Q. Chang, Carbon-dot-based heterojunction for engineering band-edge position and photocatalytic performance. Small 14, 1803447 (2018)

    Article  CAS  Google Scholar 

  69. C. Zhang, Z. Huang, J. Lu, N. Luo, F. Wang, Generation and confinement of long-lived N-oxyl radical and its photocatalysis. J. Am. Chem. Soc. 140, 2032–2035 (2018)

    Article  CAS  Google Scholar 

  70. J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ. Sci. Technol. 44, 6849–6854 (2010)

    Article  CAS  Google Scholar 

  71. J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang, S.F. Liu, Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal. B-Environ. 191, 130–137 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the Analysis and Testing Center of SEU for the characterization of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wu.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

43578_2021_208_MOESM1_ESM.docx

The supplementary material contains equations that are used to calculate bandgap (Eq. S1), apparent rate constant (Eq. S2: pseudo-first-order kinetic model used for describing TC degradation process), adsorption saturation capacity (Eq. S3: pseudo-second-order kinetic model conformed to TC adsorption behavior) and TC degradation rate (Eq. S4). And the results of SEM–EDS tests (Fig. S1) are also provided. Supplementary file1 (DOCX 306 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, Z., Guo, Y. et al. A Z-scheme iron-based hollow microsphere with enhanced photocatalytic performance for tetracycline degradation. Journal of Materials Research 36, 1600–1613 (2021). https://doi.org/10.1557/s43578-021-00208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00208-3

Keywords

Navigation