Skip to main content

Advertisement

Log in

Enhanced photocatalytic degradation of cationic and anionic dyes by Ag-modified g-C3N4 composite: Insights on different mechanisms under visible light

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ag/g-C3N4 was synthesized by thermopolymerization and photo-deposition methods, and the performance of Ag/g-C3N4 was evaluated by degrading cationic dye methylene blue (MB) and anionic dye tartrazine (TZ) under visible light. Results showed that the photocatalytic efficiency of Ag/g-C3N4 for MB and TZ was significantly improved compared with pristine g-C3N4. 80% of MB was removed in 120 min and TZ could be completely degraded in 90 min by Ag/g-C3N4. The improvement of photocatalytic efficiency can be ascribed to the better light absorption and lower recombination rate of e/h+ after loading of Ag nanoparticles. The degradation efficiency of Ag/g-C3N4 for MB was improved as pH increased, while the efficiency for TZ was decreased at the same condition. This study also revealed the different photocatalytic mechanisms of MB and TZ. It showed that hole played a dominant role in degrading MB, while the degradation of TZ mainly relied on superoxide radical.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

The graphs were drawn by Origin95.

References

  1. W. Konicki, D. Siber, U. Narkiewicz, Removal of Rhodamine B from aqueous solution by ZnFe2O4 nanocomposite with magnetic separation performance. Pol. J. Chem. Technol. 19, 65 (2017). https://doi.org/10.1515/pjct-2017-0069

    Article  CAS  Google Scholar 

  2. W. Konicki, I. Pełech, Removing cationic dye from aqueous solutions using as-grown and modified multi-walled carbon nanotubes. Pol. J. Environ. Stud. 28, 717 (2018)

    Article  Google Scholar 

  3. X. Wang, X. Gong, Q. Zhang, H. Du, Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction. J. Environ. Sci. (China) 25(Suppl 1), S63 (2013). https://doi.org/10.1016/S1001-0742(14)60628-8

    Article  Google Scholar 

  4. L. Pereira, M. Alves, in Environmental Protection Strategies for Sustainable Development. ed. by A. Malik, E. Grohmann (Springer, Dordrecht, 2012), p. 111

    Chapter  Google Scholar 

  5. L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A-Gen. 409, 215 (2011). https://doi.org/10.1016/j.apcata.2011.10.006

    Article  CAS  Google Scholar 

  6. N. Phonthammachai, J. Kim, T. White, Synthesis and performance of a photocatalytic titania-hydroxyapatite composite. J. Mater. Res. 23, 2398 (2008). https://doi.org/10.1557/jmr.2008.0290

    Article  CAS  Google Scholar 

  7. K. Qi, Y. Li, Y. Xie, S. Liu, R. Wang, Ag loading enhanced photocatalytic activity of g-C3N4 porous nanosheets for decomposition of organic pollutants. Front. Chem. 7, 91 (2019). https://doi.org/10.3389/fchem.2019.00091

    Article  CAS  Google Scholar 

  8. M. Wang, M. Fang, C. Tang, L. Zhang, Z. Huang, Y. Liu, X. Wu, A C3N4/Bi2WO6 organic-inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016). https://doi.org/10.1557/jmr.2016.72

    Article  CAS  Google Scholar 

  9. B. Zhu, G. Xu, X. Li, Z. Wang, J. Lv, X. Shu, J. Huang, Z. Zheng, Y. Wu, Ultrathin porous g-CN nanosheets fabricated by direct calcination of pre-treated melamine for enhanced photocatalytic performance. J. Mater. Res. 34, 1 (2019). https://doi.org/10.1557/jmr.2019.294

    Article  CAS  Google Scholar 

  10. B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Appl. Catal. B-Environ. 224, 983 (2018). https://doi.org/10.1016/j.apcatb.2017.11.025

    Article  CAS  Google Scholar 

  11. S. Martha, A. Nashim, K.M. Parida, Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J. Mater. Chem. A 1, 7816 (2013). https://doi.org/10.1039/c3ta10851a

    Article  CAS  Google Scholar 

  12. J. Zhang, F. Guo, X. Wang, An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater. 23, 3008 (2013). https://doi.org/10.1002/adfm.201203287

    Article  CAS  Google Scholar 

  13. J. Huang, D. Li, R. Li, Q. Zhang, G. Liu, An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem. Eng. J. 374, 242 (2019). https://doi.org/10.1016/j.cej.2019.05.175

    Article  CAS  Google Scholar 

  14. Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng, H. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater. 344, 758 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.027

    Article  CAS  Google Scholar 

  15. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiew. Appl. Catal. B-Environ. (2017). https://doi.org/10.1016/j.apcatb.2017.06.003

    Article  Google Scholar 

  16. H. Pan, Y.-W. Zhang, V.B. Shenoy, H. Gao, Ab initio study on a novel photocatalyst: functionalized graphitic carbon nitride nanotube. ACS Catal. 1, 99 (2011). https://doi.org/10.1021/cs100045u

    Article  CAS  Google Scholar 

  17. K. Tian, W.J. Liu, H. Jiang, Comparative investigation on photoreactivity and mechanism of biogenic and chemosythetic Ag/C3N4 composites under visible light irradiation. ACS Sustain. Chem. Eng. 3, 269 (2014). https://doi.org/10.1021/sc500646a

    Article  CAS  Google Scholar 

  18. D.B. Ingram, P. Christopher, J.L. Bauer, S. Linic, Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441 (2011). https://doi.org/10.1021/cs200320h

    Article  CAS  Google Scholar 

  19. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano. Lett. 11, 1111 (2011). https://doi.org/10.1021/nl104005n

    Article  CAS  Google Scholar 

  20. Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale 7, 13723 (2015). https://doi.org/10.1039/c5nr03260a

    Article  CAS  Google Scholar 

  21. L. Liu, Y. Qi, J. Lu, S. Lin, W. An, J. Hu, Y. Liang, W. Cui, Dramatic activity of a Bi2WO6@g-C3N4 photocatalyst with a core@shell structure. RSC Adv. 5, 99339 (2015). https://doi.org/10.1039/c5ra19929h

    Article  CAS  Google Scholar 

  22. Q. Shen, C. Wu, Z. You, F. Huang, J. Sheng, F. Zhang, D. Cheng, H. Yang, g-C3N4 nanoparticle@porous g-C3N4 composite photocatalytic materials with significantly enhanced photo-generated carrier separation efficiency. J. Mater. Res. 35, 1 (2020). https://doi.org/10.1557/jmr.2020.182

    Article  CAS  Google Scholar 

  23. X. Yan, X. Yuan, J. Wang, Q. Wang, C. Zhou, D. Wang, H. Tang, J. Pan, X. Cheng, Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity. J. Mater. Res. 34, 1 (2019). https://doi.org/10.1557/jmr.2019.164

    Article  CAS  Google Scholar 

  24. L. Peng, Z. Li, R. Zheng, H. Yu, X. Dong, Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity. J. Mater. Res. 34, 1 (2019). https://doi.org/10.1557/jmr.2019.113

    Article  CAS  Google Scholar 

  25. S. Wang, F. He, P. Dong, Z. Tai, C. Zhao, Y. Wang, F. Liu, Simultaneous morphology, band structure, and defect optimization of graphitic carbon nitride microsphere by the precursor concentration to boost photocatalytic activity. J. Mater. Res. 33, 1 (2018). https://doi.org/10.1557/jmr.2018.342

    Article  CAS  Google Scholar 

  26. S. Yan, Z. Li, Z. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 3894 (2010). https://doi.org/10.1021/la904023j

    Article  CAS  Google Scholar 

  27. W. Baran, A. Makowski, W. Wardas, The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dyes Pigments 76, 226 (2008). https://doi.org/10.1016/j.dyepig.2006.08.031

    Article  CAS  Google Scholar 

  28. D. Lu, Y. Zhang, S. Lin, L. Wang, C. Wang, Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J. Alloys. Compd. 579, 336 (2013). https://doi.org/10.1016/j.jallcom.2013.06.098

    Article  CAS  Google Scholar 

  29. M.O. Dawodu, K.G. Akpomie, Evaluating the potential of a Nigerian soil as an adsorbent for tartrazine dye: Isotherm, kinetic and thermodynamic studies. Alex. Eng. J. 55, 3211 (2016). https://doi.org/10.1016/j.aej.2016.08.008

    Article  Google Scholar 

  30. S. Adhikari, H. Lee, D.-H. Kim, Efficient visible-light induced electron-transfer in Z-scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline. Chem. Eng. J. 391, 123504 (2020). https://doi.org/10.1016/j.cej.2019.123504

    Article  CAS  Google Scholar 

  31. T. Sun, H.-Y. Jiang, C.C. Ma, F. Mao, B. Xue, Ag/g-C3N4 photocatalysts: microwave-assisted synthesis and enhanced visible-light photocatalytic activity. Catal. Commun. 79, 45 (2016). https://doi.org/10.1016/j.catcom.2016.03.004

    Article  CAS  Google Scholar 

  32. X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Metal containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv. Mater. 21, 1609 (2009). https://doi.org/10.1002/adma.200802627

    Article  CAS  Google Scholar 

  33. J. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 22, 15006 (2012). https://doi.org/10.1039/c2jm32053c

    Article  CAS  Google Scholar 

  34. Y. Bu, Z. Chen, W. Li, Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl. Catal. B-Environ. 144, 622 (2014). https://doi.org/10.1016/j.apcatb.2013.07.066

    Article  CAS  Google Scholar 

  35. S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B-Environ. 186, 77 (2016). https://doi.org/10.1016/j.apcatb.2015.12.051

    Article  CAS  Google Scholar 

  36. X. Li, X. Wang, M. Antonietti, Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity. ACS Catal. 2, 2082 (2012). https://doi.org/10.1021/cs300413x

    Article  CAS  Google Scholar 

  37. Z. Zhu, Z. Lu, X. Zhao, Y. Yan, W. Shi, D. Wang, L. Yang, X. Lin, Z. Hua, Y. Liu, Surface imprinting of a g-C3N4 photocatalyst for enhanced photocatalytic activity and selectivity towards photodegradation of 2-mercaptobenzothiazole. RSC Adv. 5, 40726 (2015). https://doi.org/10.1039/c5ra06209h

    Article  CAS  Google Scholar 

  38. Y. Jun, E. Lee, X. Wang, W. Hong, G. Stucky, A. Thomas, From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 23, 3661 (2013). https://doi.org/10.1002/adfm.201203732

    Article  CAS  Google Scholar 

  39. C. Belver, R. Bellod, A. Fuerte, M. Fernández-García, Nitrogen-containing TiO2 photocatalysts. Appl. Catal. B-Environ. 65, 301 (2006). https://doi.org/10.1016/j.apcatb.2006.02.007

    Article  CAS  Google Scholar 

  40. J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2, 940 (2012). https://doi.org/10.1021/cs300167b

    Article  CAS  Google Scholar 

  41. S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150 (2015). https://doi.org/10.1002/adma.201500033

    Article  CAS  Google Scholar 

  42. K. Li, Z. Zeng, L. Yan, S. Luo, X. Luo, M. Huo, Y. Guo, Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B-Environ. 165, 428 (2015). https://doi.org/10.1016/j.apcatb.2014.10.039

    Article  CAS  Google Scholar 

  43. Y. Yang, Y. Guo, F. Liu, X. Yuan, Y. Guo, S. Zhang, W. Guo, M. Huo, Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B-Environ. 142, 828 (2013). https://doi.org/10.1016/j.apcatb.2013.06.026

    Article  CAS  Google Scholar 

  44. G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 22, 8083 (2012). https://doi.org/10.1039/c2jm00097k

    Article  CAS  Google Scholar 

  45. R. Goei, T. Lim, Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and antibacterial activities. Water Res. 59, 207 (2014). https://doi.org/10.1016/j.watres.2014.04.025

    Article  CAS  Google Scholar 

  46. W. Zhao, Y. Li, P. Zhao, L. Zhang, B. Dai, J. Xu, H. Huang, Y. He, D. Leung, Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. Chem. Eng. J. 405, 126555 (2021). https://doi.org/10.1016/j.cej.2020.126555

    Article  CAS  Google Scholar 

  47. L. Ge, C. Han, Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl. Catal. B-Environ. 117, 268 (2012). https://doi.org/10.1016/j.apcatb.2012.01.021

    Article  CAS  Google Scholar 

  48. P. Zhang, X. Jian, J. Tan, Y. Ran, G. Zhang, Ag/AgBr coupled low crystalline Nb2O5 as an effective photocatalyst for the degradation of rhodamine B. J. Mater. Res. 35, 1692 (2020). https://doi.org/10.1557/jmr.2020.144

    Article  CAS  Google Scholar 

  49. S. Fu, Y. He, Q. Wu, Y. Wu, T. Wu, Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252–2260 (2016). https://doi.org/10.1557/jmr.2016.234

    Article  CAS  Google Scholar 

  50. H. Kim, S. Gim, T. Jeon, H. Kim, W. Choi, Distorted carbon nitride structure with substituted benzene moieties for enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces. 9, 40360 (2017). https://doi.org/10.1021/acsami.7b14191

    Article  CAS  Google Scholar 

  51. L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A-Gen. 409–410, 215 (2011). https://doi.org/10.1016/j.apcata.2011.10.006

    Article  CAS  Google Scholar 

  52. H. Singh, J.K. Rajput, Novel perovskite nanocatalyst (BiFeO3) for the photodegradation of rhodamine B/tartrazine and swift reduction of nitro compounds. J. Iran. Chem. Soc. 16, 2409 (2019). https://doi.org/10.1007/s13738-019-01710-6

    Article  CAS  Google Scholar 

  53. X. Bai, R. Zong, C. Li, D. Liu, Y. Zhu, Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Appl. Catal. B-Environ. 147, 82 (2014). https://doi.org/10.1016/j.apcatb.2013.08.007

    Article  CAS  Google Scholar 

  54. P. Wang, P.-S. Yap, T.-T. Lim, C-N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl. Catal. A-Gen. 399, 25 (2011). https://doi.org/10.1016/j.apcata.2011.04.008

    Article  CAS  Google Scholar 

  55. B. Zhou, X. Zhao, H. Liu, J. Qu, C. Huang, Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl. Catal. B-Environ. 99, 214 (2010). https://doi.org/10.1016/j.apcatb.2010.06.022

    Article  CAS  Google Scholar 

  56. H. Fu, Y. Yang, R. Zhu, J. Liu, M. Usman, Q. Chen, H. He, Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. J. Colloid Interf. Sci. 530, 704 (2018). https://doi.org/10.1016/j.jcis.2018.07.025

    Article  CAS  Google Scholar 

  57. W. Konicki, A. Helminiak, W. Arabczyk, E. Mijowska, Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. J. Colloid Interf. Sci. 497, 155 (2017). https://doi.org/10.1016/j.jcis.2017.03.008

    Article  CAS  Google Scholar 

  58. W. Konicki, M. Aleksandrzak, E. Mijowska, Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 123, 35 (2017). https://doi.org/10.1016/j.cherd.2017.03.036

    Article  CAS  Google Scholar 

  59. E. Lima, B. Royer, J. Vaghetti, N. Simon, B. Cunha, F. Pavan, E. Benvenutti, R. Cataluna-Veses, C. Airoldi, Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution kinetics and equilibrium study. J. Hazard. Mater. 155, 536 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.101

    Article  CAS  Google Scholar 

  60. S. Ye, M. Yan, X. Tan, J. Liang, G. Zeng, H. Wu, B. Song, C. Zhou, Y. Yang, H. Wang, Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl. Catal. B-Environ. 250, 78 (2019). https://doi.org/10.1016/j.apcatb.2019.03.004

    Article  CAS  Google Scholar 

  61. Q. He, F. Zhou, S. Zhan, Y. Yang, Y. Liu, Y. Tian, N. Huang, Enhancement of photocatalytic and photoelectrocatalytic activity of Ag modified Mpg-C3N4 composites. Appl. Surf. Sci. 391, 423 (2017). https://doi.org/10.1016/j.apsusc.2016.07.005

    Article  CAS  Google Scholar 

  62. Y. Shang, X. Chen, W. Liu et al., Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method. Appl. Catal. B-Environ. 204, 78 (2017). https://doi.org/10.1016/j.apcatb.2016.11.025

    Article  CAS  Google Scholar 

  63. N. Cheng, J. Tian, Q. Liu, C. Ge, A. Qusti, A. Asiri, O. Al-Youbi, X.S. Abdulrahman, Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Inter. 5, 6815 (2013). https://doi.org/10.1021/am401802r

    Article  CAS  Google Scholar 

  64. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15 (2015). https://doi.org/10.1039/c4nr03008g

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51878357) and the Natural Science Foundation of Tianjin (Grant No. 18JCYBJC23200).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by WK, RZ, and WB. The first draft of the manuscript was written by WK, WL, and LJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinfeng Lu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, K., Wei, L., Ren, Z. et al. Enhanced photocatalytic degradation of cationic and anionic dyes by Ag-modified g-C3N4 composite: Insights on different mechanisms under visible light. Journal of Materials Research 36, 1549–1560 (2021). https://doi.org/10.1557/s43578-021-00203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00203-8

Keywords

Navigation