Skip to main content
Log in

Multi-step cefazolin sodium release from bioactive TiO2 nanotubes: Surface and polymer coverage effects

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bacterial implant-related infections have been pointed out as the leading cause of metal implant failure. Recently, nanotexturization of biomaterials surface associated with antibiotic loading revealed itself as a promising strategy for enhancing osseointegration while mitigating bacterial infections. However, fewer studies describe the effects of multi-step local drug delivery. This study investigates 1 mg Cefazolin Sodium (CS) release from anodic nanotextured titanium-based devices and the effect of polymer coverage with differential aqua solubility characteristics (Chitosan—CH and Carboxymethylcellulose—CM). Results show that larger inner pore diameters are related to longer drug release times on uncovered samples. The polymeric coverage decreases the release rates, highlighting the Carboxymethylcellulose boosting the Cefazolin release time by 51–77 fold. All biomaterials exhibited a low or absent hemolytic activity and considerable bacteria inactivation. In summary, 40 °C/CM-based samples present the most promising results for drug release devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data analyzed during this study are included in this published article and its supplementary information (SI) files.

Abbreviations

CH:

Chitosan

CM:

Carboxymethylcellulose

CS:

Cefazolin sodium

ERCs:

Erythrocytes

HS:

High soluble

KP:

Korsmeyer–Peppas

LS:

Low soluble polymer

MPS:

Modified Peppas–Sahlim

NIZ:

Normalized inhibition zone

PCD:

Polymer-covered diffusion

PS:

Peppas–Sahlim

SBF:

Simulated body fluid

TiO2NTs:

TiO2 nanotubes

References

  1. C. Pan, Z. Zhou, X. Yu, Coatings as the useful drug delivery system for the prevention of implant-related infections. J. Orthop. Surg. Res. 13, 1–11 (2018). https://doi.org/10.1186/s13018-018-0930-y

    Article  Google Scholar 

  2. M. Ribeiro, F.J. Monteiro, M.P. Ferraz, Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2, 176–194 (2012). https://doi.org/10.4161/biom.22905

    Article  Google Scholar 

  3. G.E. Cook, D.C. Markel, W. Ren et al., Infection in orthopaedics. J. Orthop. Trauma 29, S19–S23 (2015). https://doi.org/10.1097/BOT.0000000000000461

    Article  Google Scholar 

  4. Grand View Research (2018) Biomaterials Market Size Worth $250.4 Billion by 2025 l CAGR: 14.7%

  5. H. Yoo, M. Kim, Y.T. Kim et al., Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo)electrochemical reactions. Catalysts 8, 1–25 (2018). https://doi.org/10.3390/catal8110555

    Article  CAS  Google Scholar 

  6. K.-H. Kim, N. Ramaswamy, Electrochemical surface modification of titanium in dentistry. Dent. Mater. J. 28, 20–36 (2009). https://doi.org/10.4012/dmj.28.20

    Article  CAS  Google Scholar 

  7. Z. Guo, C. Chen, Q. Gao et al., Fabrication of silver-incorporated TiO2 nanotubes and evaluation on its antibacterial activity. Mater. Lett. 137, 464–467 (2014). https://doi.org/10.1016/j.matlet.2014.09.081

    Article  CAS  Google Scholar 

  8. M. Sinn Aw, M. Kurian, D. Losic, Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater. Sci. 2, 10–34 (2013). https://doi.org/10.1039/c3bm60196j

    Article  CAS  Google Scholar 

  9. K. Gulati, S. Maher, D.M. Findlay, D. Losic, Titania nanotubes for orchestrating osteogenesis at the bone-implant interface. Nanomedicine 11, 1847–1864 (2016). https://doi.org/10.2217/nnm-2016-0169

    Article  CAS  Google Scholar 

  10. A.F. Cipriano, C. Miller, H. Liu, Anodic growth and biomedical applications of TiO2 nanotubes. J. Biomed. Nanotechnol. 10, 2977–3003 (2014). https://doi.org/10.1166/jbn.2014.1927

    Article  CAS  Google Scholar 

  11. L. Zhao, S. Mei, P.K. Chu et al., The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31, 5072–5082 (2010). https://doi.org/10.1016/j.biomaterials.2010.03.014

    Article  CAS  Google Scholar 

  12. S. Saha, R. Kumar, K. Pramanik, A. Biswas, Interaction of osteoblast—TiO2 nanotubes in vitro: the combinatorial effect of surface topography and other physico-chemical factors governs the cell fate. Appl. Surf. Sci. 449, 1–14 (2018). https://doi.org/10.1016/j.apsusc.2018.01.160

    Article  CAS  Google Scholar 

  13. A. Pawlik, M. Jarosz, K. Syrek, G.D. Sulka, Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers. Colloids Surf. B 152, 95–102 (2017). https://doi.org/10.1016/j.colsurfb.2017.01.011

    Article  CAS  Google Scholar 

  14. W. Feng, Z. Geng, Z. Li et al., Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng. C 62, 105–112 (2016). https://doi.org/10.1016/j.msec.2016.01.046

    Article  CAS  Google Scholar 

  15. C. Yao, T.J. Webster, Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J. Biomed. Mater. Res. Part B 91, 587–595 (2009). https://doi.org/10.1002/jbm.b.31433

    Article  CAS  Google Scholar 

  16. C.H. Ferreira, A.P. Simon, V.A.Q. Santos et al., Nanotexturization of Ti-based implants in simulated body fluid: influence of synthesis parameters on coating properties and kinetics of drug release. J. Mater. Res. 34, 2828–2836 (2019). https://doi.org/10.1557/jmr.2019.216

    Article  CAS  Google Scholar 

  17. K.A. Poelstra, N.A. Barekzi, A.M. Rediske et al., Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J. Biomed. Mater. Res. 60, 206–215 (2002). https://doi.org/10.1002/jbm.10069

    Article  CAS  Google Scholar 

  18. R.C. Lijana, M.C. Williams, The effects of antibiotics on hemolytic behavior of red cells. Cell Biophys. 8, 223–242 (1986). https://doi.org/10.1007/BF02788514

    Article  CAS  Google Scholar 

  19. S. Fredenberg, M. Wahlgren, M. Reslow, A. Axelsson, The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int. J. Pharm. 415, 34–52 (2011). https://doi.org/10.1016/j.ijpharm.2011.05.049

    Article  CAS  Google Scholar 

  20. S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control Release 100, 5–28 (2004). https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  Google Scholar 

  21. A.P. Simon, V.A.Q. Santos, A. Rodrigues et al., Enhancement of mechanical properties and wettability of TiO2NT arrays formed in SBF-based electrolyte. Adv. Eng. Mater. (2019). https://doi.org/10.1002/adem.201900813

    Article  Google Scholar 

  22. C. Suárez, F. Gudiol, Antibióticos betalactámicos. Enferm. Infecc. Microbiol. Clin. 27, 116–129 (2009)

    Article  Google Scholar 

  23. K. Gulati, M. Kogawa, M. Prideaux et al., Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability. Mater. Sci. Eng. C 69, 831–840 (2016). https://doi.org/10.1016/j.msec.2016.07.047

    Article  CAS  Google Scholar 

  24. N. Amlizan, T. Wui, Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int. J. Pharm. 403, 73–82 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.023

    Article  CAS  Google Scholar 

  25. J. Siepmann, F. Siepmann, Modeling of diffusion controlled drug delivery. J. Control Release 161, 351–362 (2012). https://doi.org/10.1016/j.jconrel.2011.10.006

    Article  CAS  Google Scholar 

  26. J. Zhou, M.A. Frank, Y. Yang et al., A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Mater. Sci. Eng. C 82, 277–283 (2018). https://doi.org/10.1016/j.msec.2017.08.066

    Article  CAS  Google Scholar 

  27. D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R. Rep. 74, 377–406 (2013). https://doi.org/10.1016/j.mser.2013.10.001

    Article  Google Scholar 

  28. J.M. Macak, P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta 52, 1258–1264 (2006). https://doi.org/10.1016/j.electacta.2006.07.021

    Article  CAS  Google Scholar 

  29. J.M. Macak, H. Tsuchiya, L. Taveira et al., Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J. Biomed. Mater. Res. Part A 75, 928–933 (2005). https://doi.org/10.1002/jbm.a.30501

    Article  CAS  Google Scholar 

  30. E. Balaur, J.M. Macak, H. Tsuchiya, P. Schmuki, Wetting behaviour of layers of TiO2 nanotubes with different diameters. J. Mater. Chem. 15, 4488–4491 (2005). https://doi.org/10.1039/b509672c

    Article  CAS  Google Scholar 

  31. L. Zhang, X. Liao, A. Fok et al., Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation. Mater. Sci. Eng. C 82, 91–101 (2017). https://doi.org/10.1016/j.msec.2017.08.024

    Article  CAS  Google Scholar 

  32. A. Santos, M. Sinn Aw, M. Bariana et al., Drug-releasing implants: current progress, challenges and perspectives. J. Mater. Chem. B 2, 6157–6182 (2014)

    Article  CAS  Google Scholar 

  33. A.P. Simon, C.H. Ferreira, A. Rodrigues et al., TiO2NT as platform for drug release: the effect of film wettability. Orbital Electron J. Chem. 11, 361–366 (2019)

    Article  Google Scholar 

  34. M.F. Kunrath, R. Hubler, R.S.A. Shinkai, E.R. Teixeira, Application of TiO 2 nanotubes as a drug delivery system for biomedical implants: a critical overview. ChemistrySelect 3, 11180–11189 (2018). https://doi.org/10.1002/slct.201801459

    Article  CAS  Google Scholar 

  35. K. Liu, M. Cao, A. Fujishima, L. Jiang, Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 114, 10044–10094 (2014). https://doi.org/10.1021/cr4006796

    Article  CAS  Google Scholar 

  36. D.H. Shin, T. Shokuhfar, C.K. Choi et al., Wettability changes of TiO2 nanotube surfaces. Nanotechnology 22, 315704 (2011). https://doi.org/10.1088/0957-4484/22/31/315704

    Article  CAS  Google Scholar 

  37. S. Oh, C. Daraio, L.-H. Chen et al., Significantly accelerated osteoblast cell growth on aligned TiO2. J. Biomed. Mater. Res. Part A 78, 97–103 (2006)

    Article  Google Scholar 

  38. J. He, W. Zhou, X. Zhou et al., The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J. Mater. Sci. Mater. Med. 19, 3465–3472 (2008)

    Article  CAS  Google Scholar 

  39. M. Uchida, H.-M. Kim, T. Kokubo et al., Structural dependence of apatite formation on zirconia gels in a simulated body fluid. J. Ceram. Soc. Jpn. 110, 710–715 (2002). https://doi.org/10.2109/jcersj.110.710

    Article  CAS  Google Scholar 

  40. D. Fang, K. Huang, S. Liu et al., High-density NiTiO3/TiO2 nanotubes synthesized through sol-gel method using well-ordered TiO2 membranes as template. J. Alloys Compd. 498, 37–41 (2010). https://doi.org/10.1016/j.jallcom.2010.02.150

    Article  CAS  Google Scholar 

  41. Q. Wang, J.Y. Huang, H.Q. Li et al., Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int. J. Nanomed. 12, 151–165 (2017)

    Article  CAS  Google Scholar 

  42. A. Hamlekhan, S. Sinha-Ray, C. Takoudis et al., Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. J. Phys. D 48, 275401 (2015). https://doi.org/10.1088/0022-3727/48/27/275401

    Article  CAS  Google Scholar 

  43. A. Trybala, N. Koursari, P. Johnson et al., Interaction of liquid foams with porous substrates. Curr. Opin. Colloid Interface Sci. 39, 212–219 (2019)

    Article  CAS  Google Scholar 

  44. V.M. Prida, E. Manova, V. Vega et al., Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays. J. Magn. Magn. Mater. 316, 110–113 (2007). https://doi.org/10.1016/j.jmmm.2007.02.021

    Article  CAS  Google Scholar 

  45. D.X. Zhang, C. Yoshikawa, N.G. Welch et al., Spatially controlled surface modification of porous silicon for sustained drug delivery applications. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-018-37750-w

    Article  CAS  Google Scholar 

  46. G.G. Genchi, Y. Cao, T.A. Desai, TiO2 Nanotube arrays as smart platforms for biomedical applications. in Smart Nanoparticles for Biomedicine. (Elsevier, 2018), pp 143–157

  47. W.A. Abbas, I.H. Abdullah, B.A. Ali et al., Recent advances in the use of TiO2 nanotube powder in biological, environmental, and energy applications. Nanoscale Adv. 1, 2801–2816 (2019)

    Article  Google Scholar 

  48. J.M. Unagolla, A.C. Jayasuriya, Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. 114, 199–209 (2018). https://doi.org/10.1016/j.ejps.2017.12.012

    Article  CAS  Google Scholar 

  49. R.W. Korsmeyer, N.A. Peppas, Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J. Memb. Sci. 9, 211–227 (1981). https://doi.org/10.1016/S0376-7388(00)80265-3

    Article  CAS  Google Scholar 

  50. N.A. Peppas, J.J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 57, 169–172 (1989). https://doi.org/10.1016/0378-5173(89)90306-2

    Article  CAS  Google Scholar 

  51. T. Kumeria, H. Mon, M.S. Aw et al., Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf. B (2015). https://doi.org/10.1016/j.colsurfb.2015.04.021

    Article  Google Scholar 

  52. P.L. Ritger, N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Controlled Release 5, 23–36 (1987)

    Article  CAS  Google Scholar 

  53. S. Cheng, D. Wei, Y. Zhou, Mechanical and corrosion resistance of hydrophilic sphene/titania composite coatings on titanium and deposition and release of cefazolin sodium/chitosan films. Appl. Surf. Sci. 257, 2657–2664 (2011). https://doi.org/10.1016/j.apsusc.2010.10.038

    Article  CAS  Google Scholar 

  54. D. Wei, R. Zhou, S. Cheng et al., Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications. Mater. Sci. Eng. C 33, 4118–4125 (2013). https://doi.org/10.1016/j.msec.2013.05.053

    Article  CAS  Google Scholar 

  55. F. Tamani, C. Bassand, M.C. Hamoudi et al., Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: diprophylline dispersions. Int. J. Pharm. 572, 118819 (2019). https://doi.org/10.1016/j.ijpharm.2019.118819

    Article  CAS  Google Scholar 

  56. J. Siepmann, A. Streubel, N.A. Peppas, Understanding and predicting drug delivery from hydrophilic matrix tablets using the “sequential layer” model. Pharm. Res. 19, 306–314 (2002). https://doi.org/10.1023/A:1014447102710

    Article  CAS  Google Scholar 

  57. L.L. Lao, S.S. Venkatraman, N.A. Peppas, Modeling of drug release from biodegradable polymer blends. Eur. J. Pharm. Biopharm. 70, 796–803 (2008). https://doi.org/10.1016/j.ejpb.2008.05.024

    Article  CAS  Google Scholar 

  58. J. Siepmann, N. Faisant, J. Benoit, A new mathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations. Pharm. Res. 19, 1885–1893 (2002)

    Article  CAS  Google Scholar 

  59. S.S. Magill, J.R. Edwards, W. Bamberg et al., Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 370, 1198–1208 (2014). https://doi.org/10.1056/NEJMoa1306801

    Article  CAS  Google Scholar 

  60. W. Zimmerli, F.A. Waldvogel, P. Vaudaux, U.E. Nydegger, Pathogenesis of foreign-body infection—description and characteristics of an animal-model. J. Infect. Dis. 146, 487–497 (1982)

    Article  CAS  Google Scholar 

  61. A. Mazare, D. Ionita, G. Totea, I. Demetrescu, Calcination condition effect on microstructure, electrochemical and hemolytic behavior of amorphous nanotubes on Ti6Al7Nb alloy. Surf. Coat. Technol. 252, 87–92 (2014). https://doi.org/10.1016/j.surfcoat.2014.04.049

    Article  CAS  Google Scholar 

  62. Z. Gong, Y. Hu, F. Gao et al., Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors. Colloids Surf. B 184, 110521 (2019). https://doi.org/10.1016/j.colsurfb.2019.110521

    Article  CAS  Google Scholar 

  63. Q. Huang, Y. Yang, D. Zheng et al., Effect of construction of TiO2 nanotubes on platelet behaviors: structure-property relationships. Acta Biomater. 51, 505–512 (2017). https://doi.org/10.1016/j.actbio.2017.01.044

    Article  CAS  Google Scholar 

  64. Z. Wachol-Drewek, M. Pfeiffer, E. Scholl, Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials 17, 1733–1738 (1996). https://doi.org/10.1016/0142-9612(96)87654-X

    Article  CAS  Google Scholar 

  65. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Instrumentation C, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

    CAS  Google Scholar 

  66. V. Bulmus, M. Woodward, L. Lin et al., A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control Release 93, 105–120 (2003). https://doi.org/10.1016/j.jconrel.2003.06.001

    Article  CAS  Google Scholar 

  67. R. Palanivelu, A. Ruban Kumar, Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite. Spectrochim. Acta Part A 127, 434–438 (2014). https://doi.org/10.1016/j.saa.2014.02.106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to ABL—Antibioticos do Brasil for CS supply, UFSCar, Analysis Center of UTFPR-PB, Biocenter Clinical Analysis Laboratory, and LNNano – Brazilian Nanotechnology National Laboratory (CNPEM/MCTI) for the use of the Thermo Fisher Scientific Quanta 650 FEG microscopy lab open access facility.

Funding

This work was supported by UTFPR [PAPCDT 06/2016 and 07/2017]. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana de Souza Sikora.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Hemolytic Activity was conducted according to the ethics committee standards of Universidade Tecnológica Federal do Paraná, under project number: 02153418.2.0000.5547.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 785 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, A.P., Ferreira, C.H., Santos, V.A.Q. et al. Multi-step cefazolin sodium release from bioactive TiO2 nanotubes: Surface and polymer coverage effects. Journal of Materials Research 36, 1510–1523 (2021). https://doi.org/10.1557/s43578-021-00202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00202-9

Keywords

Navigation