Abstract
Bacterial implant-related infections have been pointed out as the leading cause of metal implant failure. Recently, nanotexturization of biomaterials surface associated with antibiotic loading revealed itself as a promising strategy for enhancing osseointegration while mitigating bacterial infections. However, fewer studies describe the effects of multi-step local drug delivery. This study investigates 1 mg Cefazolin Sodium (CS) release from anodic nanotextured titanium-based devices and the effect of polymer coverage with differential aqua solubility characteristics (Chitosan—CH and Carboxymethylcellulose—CM). Results show that larger inner pore diameters are related to longer drug release times on uncovered samples. The polymeric coverage decreases the release rates, highlighting the Carboxymethylcellulose boosting the Cefazolin release time by 51–77 fold. All biomaterials exhibited a low or absent hemolytic activity and considerable bacteria inactivation. In summary, 40 °C/CM-based samples present the most promising results for drug release devices.
Graphic abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data analyzed during this study are included in this published article and its supplementary information (SI) files.
Abbreviations
- CH:
-
Chitosan
- CM:
-
Carboxymethylcellulose
- CS:
-
Cefazolin sodium
- ERCs:
-
Erythrocytes
- HS:
-
High soluble
- KP:
-
Korsmeyer–Peppas
- LS:
-
Low soluble polymer
- MPS:
-
Modified Peppas–Sahlim
- NIZ:
-
Normalized inhibition zone
- PCD:
-
Polymer-covered diffusion
- PS:
-
Peppas–Sahlim
- SBF:
-
Simulated body fluid
- TiO2NTs:
-
TiO2 nanotubes
References
C. Pan, Z. Zhou, X. Yu, Coatings as the useful drug delivery system for the prevention of implant-related infections. J. Orthop. Surg. Res. 13, 1–11 (2018). https://doi.org/10.1186/s13018-018-0930-y
M. Ribeiro, F.J. Monteiro, M.P. Ferraz, Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2, 176–194 (2012). https://doi.org/10.4161/biom.22905
G.E. Cook, D.C. Markel, W. Ren et al., Infection in orthopaedics. J. Orthop. Trauma 29, S19–S23 (2015). https://doi.org/10.1097/BOT.0000000000000461
Grand View Research (2018) Biomaterials Market Size Worth $250.4 Billion by 2025 l CAGR: 14.7%
H. Yoo, M. Kim, Y.T. Kim et al., Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo)electrochemical reactions. Catalysts 8, 1–25 (2018). https://doi.org/10.3390/catal8110555
K.-H. Kim, N. Ramaswamy, Electrochemical surface modification of titanium in dentistry. Dent. Mater. J. 28, 20–36 (2009). https://doi.org/10.4012/dmj.28.20
Z. Guo, C. Chen, Q. Gao et al., Fabrication of silver-incorporated TiO2 nanotubes and evaluation on its antibacterial activity. Mater. Lett. 137, 464–467 (2014). https://doi.org/10.1016/j.matlet.2014.09.081
M. Sinn Aw, M. Kurian, D. Losic, Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater. Sci. 2, 10–34 (2013). https://doi.org/10.1039/c3bm60196j
K. Gulati, S. Maher, D.M. Findlay, D. Losic, Titania nanotubes for orchestrating osteogenesis at the bone-implant interface. Nanomedicine 11, 1847–1864 (2016). https://doi.org/10.2217/nnm-2016-0169
A.F. Cipriano, C. Miller, H. Liu, Anodic growth and biomedical applications of TiO2 nanotubes. J. Biomed. Nanotechnol. 10, 2977–3003 (2014). https://doi.org/10.1166/jbn.2014.1927
L. Zhao, S. Mei, P.K. Chu et al., The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 31, 5072–5082 (2010). https://doi.org/10.1016/j.biomaterials.2010.03.014
S. Saha, R. Kumar, K. Pramanik, A. Biswas, Interaction of osteoblast—TiO2 nanotubes in vitro: the combinatorial effect of surface topography and other physico-chemical factors governs the cell fate. Appl. Surf. Sci. 449, 1–14 (2018). https://doi.org/10.1016/j.apsusc.2018.01.160
A. Pawlik, M. Jarosz, K. Syrek, G.D. Sulka, Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers. Colloids Surf. B 152, 95–102 (2017). https://doi.org/10.1016/j.colsurfb.2017.01.011
W. Feng, Z. Geng, Z. Li et al., Controlled release behaviour and antibacterial effects of antibiotic-loaded titania nanotubes. Mater. Sci. Eng. C 62, 105–112 (2016). https://doi.org/10.1016/j.msec.2016.01.046
C. Yao, T.J. Webster, Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J. Biomed. Mater. Res. Part B 91, 587–595 (2009). https://doi.org/10.1002/jbm.b.31433
C.H. Ferreira, A.P. Simon, V.A.Q. Santos et al., Nanotexturization of Ti-based implants in simulated body fluid: influence of synthesis parameters on coating properties and kinetics of drug release. J. Mater. Res. 34, 2828–2836 (2019). https://doi.org/10.1557/jmr.2019.216
K.A. Poelstra, N.A. Barekzi, A.M. Rediske et al., Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J. Biomed. Mater. Res. 60, 206–215 (2002). https://doi.org/10.1002/jbm.10069
R.C. Lijana, M.C. Williams, The effects of antibiotics on hemolytic behavior of red cells. Cell Biophys. 8, 223–242 (1986). https://doi.org/10.1007/BF02788514
S. Fredenberg, M. Wahlgren, M. Reslow, A. Axelsson, The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int. J. Pharm. 415, 34–52 (2011). https://doi.org/10.1016/j.ijpharm.2011.05.049
S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control Release 100, 5–28 (2004). https://doi.org/10.1016/j.jconrel.2004.08.010
A.P. Simon, V.A.Q. Santos, A. Rodrigues et al., Enhancement of mechanical properties and wettability of TiO2NT arrays formed in SBF-based electrolyte. Adv. Eng. Mater. (2019). https://doi.org/10.1002/adem.201900813
C. Suárez, F. Gudiol, Antibióticos betalactámicos. Enferm. Infecc. Microbiol. Clin. 27, 116–129 (2009)
K. Gulati, M. Kogawa, M. Prideaux et al., Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability. Mater. Sci. Eng. C 69, 831–840 (2016). https://doi.org/10.1016/j.msec.2016.07.047
N. Amlizan, T. Wui, Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int. J. Pharm. 403, 73–82 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.023
J. Siepmann, F. Siepmann, Modeling of diffusion controlled drug delivery. J. Control Release 161, 351–362 (2012). https://doi.org/10.1016/j.jconrel.2011.10.006
J. Zhou, M.A. Frank, Y. Yang et al., A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Mater. Sci. Eng. C 82, 277–283 (2018). https://doi.org/10.1016/j.msec.2017.08.066
D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R. Rep. 74, 377–406 (2013). https://doi.org/10.1016/j.mser.2013.10.001
J.M. Macak, P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta 52, 1258–1264 (2006). https://doi.org/10.1016/j.electacta.2006.07.021
J.M. Macak, H. Tsuchiya, L. Taveira et al., Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J. Biomed. Mater. Res. Part A 75, 928–933 (2005). https://doi.org/10.1002/jbm.a.30501
E. Balaur, J.M. Macak, H. Tsuchiya, P. Schmuki, Wetting behaviour of layers of TiO2 nanotubes with different diameters. J. Mater. Chem. 15, 4488–4491 (2005). https://doi.org/10.1039/b509672c
L. Zhang, X. Liao, A. Fok et al., Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation. Mater. Sci. Eng. C 82, 91–101 (2017). https://doi.org/10.1016/j.msec.2017.08.024
A. Santos, M. Sinn Aw, M. Bariana et al., Drug-releasing implants: current progress, challenges and perspectives. J. Mater. Chem. B 2, 6157–6182 (2014)
A.P. Simon, C.H. Ferreira, A. Rodrigues et al., TiO2NT as platform for drug release: the effect of film wettability. Orbital Electron J. Chem. 11, 361–366 (2019)
M.F. Kunrath, R. Hubler, R.S.A. Shinkai, E.R. Teixeira, Application of TiO 2 nanotubes as a drug delivery system for biomedical implants: a critical overview. ChemistrySelect 3, 11180–11189 (2018). https://doi.org/10.1002/slct.201801459
K. Liu, M. Cao, A. Fujishima, L. Jiang, Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 114, 10044–10094 (2014). https://doi.org/10.1021/cr4006796
D.H. Shin, T. Shokuhfar, C.K. Choi et al., Wettability changes of TiO2 nanotube surfaces. Nanotechnology 22, 315704 (2011). https://doi.org/10.1088/0957-4484/22/31/315704
S. Oh, C. Daraio, L.-H. Chen et al., Significantly accelerated osteoblast cell growth on aligned TiO2. J. Biomed. Mater. Res. Part A 78, 97–103 (2006)
J. He, W. Zhou, X. Zhou et al., The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J. Mater. Sci. Mater. Med. 19, 3465–3472 (2008)
M. Uchida, H.-M. Kim, T. Kokubo et al., Structural dependence of apatite formation on zirconia gels in a simulated body fluid. J. Ceram. Soc. Jpn. 110, 710–715 (2002). https://doi.org/10.2109/jcersj.110.710
D. Fang, K. Huang, S. Liu et al., High-density NiTiO3/TiO2 nanotubes synthesized through sol-gel method using well-ordered TiO2 membranes as template. J. Alloys Compd. 498, 37–41 (2010). https://doi.org/10.1016/j.jallcom.2010.02.150
Q. Wang, J.Y. Huang, H.Q. Li et al., Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int. J. Nanomed. 12, 151–165 (2017)
A. Hamlekhan, S. Sinha-Ray, C. Takoudis et al., Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. J. Phys. D 48, 275401 (2015). https://doi.org/10.1088/0022-3727/48/27/275401
A. Trybala, N. Koursari, P. Johnson et al., Interaction of liquid foams with porous substrates. Curr. Opin. Colloid Interface Sci. 39, 212–219 (2019)
V.M. Prida, E. Manova, V. Vega et al., Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays. J. Magn. Magn. Mater. 316, 110–113 (2007). https://doi.org/10.1016/j.jmmm.2007.02.021
D.X. Zhang, C. Yoshikawa, N.G. Welch et al., Spatially controlled surface modification of porous silicon for sustained drug delivery applications. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-018-37750-w
G.G. Genchi, Y. Cao, T.A. Desai, TiO2 Nanotube arrays as smart platforms for biomedical applications. in Smart Nanoparticles for Biomedicine. (Elsevier, 2018), pp 143–157
W.A. Abbas, I.H. Abdullah, B.A. Ali et al., Recent advances in the use of TiO2 nanotube powder in biological, environmental, and energy applications. Nanoscale Adv. 1, 2801–2816 (2019)
J.M. Unagolla, A.C. Jayasuriya, Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. 114, 199–209 (2018). https://doi.org/10.1016/j.ejps.2017.12.012
R.W. Korsmeyer, N.A. Peppas, Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. J. Memb. Sci. 9, 211–227 (1981). https://doi.org/10.1016/S0376-7388(00)80265-3
N.A. Peppas, J.J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 57, 169–172 (1989). https://doi.org/10.1016/0378-5173(89)90306-2
T. Kumeria, H. Mon, M.S. Aw et al., Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf. B (2015). https://doi.org/10.1016/j.colsurfb.2015.04.021
P.L. Ritger, N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Controlled Release 5, 23–36 (1987)
S. Cheng, D. Wei, Y. Zhou, Mechanical and corrosion resistance of hydrophilic sphene/titania composite coatings on titanium and deposition and release of cefazolin sodium/chitosan films. Appl. Surf. Sci. 257, 2657–2664 (2011). https://doi.org/10.1016/j.apsusc.2010.10.038
D. Wei, R. Zhou, S. Cheng et al., Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications. Mater. Sci. Eng. C 33, 4118–4125 (2013). https://doi.org/10.1016/j.msec.2013.05.053
F. Tamani, C. Bassand, M.C. Hamoudi et al., Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: diprophylline dispersions. Int. J. Pharm. 572, 118819 (2019). https://doi.org/10.1016/j.ijpharm.2019.118819
J. Siepmann, A. Streubel, N.A. Peppas, Understanding and predicting drug delivery from hydrophilic matrix tablets using the “sequential layer” model. Pharm. Res. 19, 306–314 (2002). https://doi.org/10.1023/A:1014447102710
L.L. Lao, S.S. Venkatraman, N.A. Peppas, Modeling of drug release from biodegradable polymer blends. Eur. J. Pharm. Biopharm. 70, 796–803 (2008). https://doi.org/10.1016/j.ejpb.2008.05.024
J. Siepmann, N. Faisant, J. Benoit, A new mathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations. Pharm. Res. 19, 1885–1893 (2002)
S.S. Magill, J.R. Edwards, W. Bamberg et al., Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 370, 1198–1208 (2014). https://doi.org/10.1056/NEJMoa1306801
W. Zimmerli, F.A. Waldvogel, P. Vaudaux, U.E. Nydegger, Pathogenesis of foreign-body infection—description and characteristics of an animal-model. J. Infect. Dis. 146, 487–497 (1982)
A. Mazare, D. Ionita, G. Totea, I. Demetrescu, Calcination condition effect on microstructure, electrochemical and hemolytic behavior of amorphous nanotubes on Ti6Al7Nb alloy. Surf. Coat. Technol. 252, 87–92 (2014). https://doi.org/10.1016/j.surfcoat.2014.04.049
Z. Gong, Y. Hu, F. Gao et al., Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors. Colloids Surf. B 184, 110521 (2019). https://doi.org/10.1016/j.colsurfb.2019.110521
Q. Huang, Y. Yang, D. Zheng et al., Effect of construction of TiO2 nanotubes on platelet behaviors: structure-property relationships. Acta Biomater. 51, 505–512 (2017). https://doi.org/10.1016/j.actbio.2017.01.044
Z. Wachol-Drewek, M. Pfeiffer, E. Scholl, Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials 17, 1733–1738 (1996). https://doi.org/10.1016/0142-9612(96)87654-X
C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Instrumentation C, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)
V. Bulmus, M. Woodward, L. Lin et al., A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control Release 93, 105–120 (2003). https://doi.org/10.1016/j.jconrel.2003.06.001
R. Palanivelu, A. Ruban Kumar, Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite. Spectrochim. Acta Part A 127, 434–438 (2014). https://doi.org/10.1016/j.saa.2014.02.106
Acknowledgments
The authors are grateful to ABL—Antibioticos do Brasil for CS supply, UFSCar, Analysis Center of UTFPR-PB, Biocenter Clinical Analysis Laboratory, and LNNano – Brazilian Nanotechnology National Laboratory (CNPEM/MCTI) for the use of the Thermo Fisher Scientific Quanta 650 FEG microscopy lab open access facility.
Funding
This work was supported by UTFPR [PAPCDT 06/2016 and 07/2017]. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article.
Ethical approval
Hemolytic Activity was conducted according to the ethics committee standards of Universidade Tecnológica Federal do Paraná, under project number: 02153418.2.0000.5547.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Simon, A.P., Ferreira, C.H., Santos, V.A.Q. et al. Multi-step cefazolin sodium release from bioactive TiO2 nanotubes: Surface and polymer coverage effects. Journal of Materials Research 36, 1510–1523 (2021). https://doi.org/10.1557/s43578-021-00202-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00202-9