Skip to main content
Log in

Adhesion property and bonding characteristic between TiN and 2D-MoS2: A first-principles study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Adhesion property and bonding characteristic between ceramic TiN and two-dimensional MoS2 (2D-MoS2) were investigated to discuss the feasibility of preparation of MoS2 on TiN by first-principles simulation. The results show that for all interface models constructed, 2D-MoS2 can adhere to TiN by the analysis of work of adhesion (Wad), where the bonding strength of TiN(111) Ti-terminated/2D-MoS2(0001) interface (Ti/S interface) is larger than that of TiN(111) N-terminated/2D-MoS2(0001) interface (N/S interface). By the analysis of charge density and charge density difference of Ti/S interfaces, there is strong aggregation of electron between interfacial atoms, which indicates that chemical bonds are formed between the interfacial atoms at Ti/S interfaces. By partial density of states (PDOS) of interfacial atoms at Ti/S interfaces, the bonding mode of interfacial atoms is the mixture of metal bond and polar covalent bond. In addition, the bonding of interfacial atoms is mainly contributed by hybridization of Ti-3d and S-2p orbitals and the interface metallicity mainly comes from electrons of Ti-3p orbital.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. M. Bar-Hena, I. Etsionb, Experimental study of the effect of coating thickness and substrate roughness on tool wear during turning. Tribol. Int. 110, 341–347 (2017). https://doi.org/10.1016/j.triboint.2016.11.011

    Article  CAS  Google Scholar 

  2. C.Y.H. Lim, S.C. Lim, K.S. Lee, The performance of TiN-coated high speed steel tool inserts in turning. Tribol. Int. 32, 393–398 (1999). https://doi.org/10.1016/S0301-679X(99)00066-3

    Article  CAS  Google Scholar 

  3. A. Torgovkin, S. Chaudhuri, J. Malm, T. Sajavaara, I.J. Maasilta, Normal-metal–insulator–superconductor tunnel junction with atomic-layer-deposited titanium nitride as superconductor. IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015). https://doi.org/10.1109/TASC.2014.2383914

    Article  CAS  Google Scholar 

  4. C. Gong, H. Meng, X. Zhao, X. Zhang, L. Yu, J. Zhang, Z. Zhang, Unique static magnetic and dynamic electromagnetic behaviors in titanium nitride/carbon composites driven by defect engineering. Sci. Rep. 6, 18927 (2016). https://doi.org/10.1038/srep18927

    Article  CAS  Google Scholar 

  5. C. Gong, C. Yan, J. Zhang, X. Cheng, H. Pan, C. Zhang, L. Yu, Z. Zhang, Room-temperature ferromagnetism evolution in nanostructured titanium nitride superconductors-the influence of structural defects. J. Mater. Chem. (2011). https://doi.org/10.1039/c1jm12359a

    Article  Google Scholar 

  6. K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  7. H. Bao, L. Wang, C. Li, J. Luo, Structural characterization and identification of graphdiyne and graphdiyne-based materials. ACS Appl. Mater. Int. 11(3), 2717–2729 (2019). https://doi.org/10.1021/acsami.8b05051

    Article  CAS  Google Scholar 

  8. C.N. Rao, K. Gopalakrishnan, U. Maitra, Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Int. 7(15), 7809–7832 (2015). https://doi.org/10.1021/am509096x

    Article  CAS  Google Scholar 

  9. Y. Guo, C. Dun, J. Xu, P. Li, W. Huang, J. Mu, C. Hou, C.A. Hewitt, Q. Zhang, Y. Li, D.L. Carroll, H. Wang, Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl. Mater. Interface 10(39), 33316–33321 (2018). https://doi.org/10.1021/acsami.8b10720

    Article  CAS  Google Scholar 

  10. K. Tang, W. Qi, Y. Li, T. Wang, Electronic Properties of van der waals heterostructure of black phosphorus and MoS2. J Phys Chem C 122(12), 7027–7032 (2018). https://doi.org/10.1021/acs.jpcc.8b01476

    Article  CAS  Google Scholar 

  11. U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar, A synoptic review of MoS2: synthesis to applications. Superlattice Microstruct. 128, 274–297 (2019). https://doi.org/10.1016/j.spmi.2019.02.005

    Article  CAS  Google Scholar 

  12. D. Berman, A. Erdemir, A.V. Sumant, Graphene: a new emerging lubricant. Mater Today 17(1), 31–42 (2013). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  CAS  Google Scholar 

  13. D. Berman, A. Erdemir, A.V. Sumant, Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12(3), 2122–2137 (2018). https://doi.org/10.1021/acsnano.7b09046

    Article  CAS  Google Scholar 

  14. U. Dasgupta, S. Chatterjee, A.J. Pal, Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Sol. Energy Mater. Sol. C 172, 353–360 (2017). https://doi.org/10.1016/j.solmat.2017.08.012

    Article  CAS  Google Scholar 

  15. P.K. Chow, E. Singh, B.C.V. Neto, Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano (2015). https://doi.org/10.1021/nn5072073

    Article  Google Scholar 

  16. A. Arulraj, M. Ramesh, B. Subramanian, G. Senguttuvan, In-situ temperature and thickness control grown 2D-MoS2 via pulsed laser ablation for photovoltaic devices. Sol. Energy 174, 286–295 (2018). https://doi.org/10.1016/j.solener.2018.08.056

    Article  CAS  Google Scholar 

  17. Q. Fang, Y. Huang, Y. Miao, K. Xu, Y. Li, F. Ma, Interfacial defect engineering on electronic states of two-dimensional AlN/MoS2 heterostructure. J. Phys. Chem. C 121, 6605–6613 (2017). https://doi.org/10.1021/acs.jpcc.6b11270

    Article  CAS  Google Scholar 

  18. S. Yu, S.J. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K.M. Gu, F.J. Seo, Q.L. Li, Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations. Appl. Surf. Sci. 428, 593–597 (2018). https://doi.org/10.1016/j.apsusc.2017.09.203

    Article  CAS  Google Scholar 

  19. M. Sharma, P. Jamdagni, A. Kumar, P.K. Ahluwalia, Electronic, dielectric and mechanical properties of MoS2/SiC hybrid bilayer: a first principle study. Phys. E. 71, 49–55 (2015). https://doi.org/10.1016/j.physe.2015.02.024

    Article  CAS  Google Scholar 

  20. J.J. Chen, Z.S. Lin, S.J. Bull, C.L. Phillips, P.D. Bristowe, Experimental and modelling techniquesfor assessing the adhesion of very thincoatings on glass. J Phys D 42, 214003 (2009). https://doi.org/10.1088/0022-3727/42/21/214003

    Article  CAS  Google Scholar 

  21. C. Stampfl, W. Mannstadt, R. Asahi, A.J. Freeman, Electronic structure and physical properties of early transition metal mononitrides: density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys. Rev. B (2001). https://doi.org/10.1103/PhysRevB.63.155106

    Article  Google Scholar 

  22. X. Fan, B. Chen, M. Zhang, D. Li, Z. Liu, C. Xiao, First-principles calculations on bonding characteristic and electronic property of TiC (111)/TiN (111) interface. Mater Des. 112, 282–289 (2016). https://doi.org/10.1016/j.matdes.2016.09.053

    Article  CAS  Google Scholar 

  23. S. Kumar, J. Kumar, O.S.K.S. Sastri, Effect of mechanical strain on electronic properties of bulk MoS2, in International Conference of Condensed Matter Physics. AIP Publishing LLC (2015). https://doi.org/10.1063/1.4915402.

  24. R.G. Dickinson, L. Pauling, The crystal structure of molybdenite. Acta Crystallogr. 26(10), 1534–1540 (2001). https://doi.org/10.1107/S0567740870004442

    Article  Google Scholar 

  25. L. Rao, H. Liu, S. Liu, Z. Shi, X. Ren, Y. Zhou, Q. Yang, Interface relationship between TiN and Ti substrate by first-principles calculation. Comput. Mater. Sci. 155, 36–47 (2018). https://doi.org/10.1016/j.commatsci.2018.08.028

    Article  CAS  Google Scholar 

  26. J.E. Greene, J.E. Sundgren, L. Hultman, First-principles study of polar Al/TiN(111) interfaces. Acta Mater. 52, 3681–3688 (2004). https://doi.org/10.1016/j.actamat.2004.04.022

    Article  CAS  Google Scholar 

  27. J.E. Greene, J.E. Sundgren, L. Hultman, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Appl. Phys. Lett. 67(20), 2928–2930 (1995). https://doi.org/10.1063/1.114845

    Article  CAS  Google Scholar 

  28. M.I. Jones, I.R. McColl, D.M. Grant, Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering. Surf. Coat. Tech. 132(2–3), 143–151 (2000). https://doi.org/10.1016/S0257-8972(00)00867-7

    Article  CAS  Google Scholar 

  29. M. Lattemann, U. Helmersson, J.E. Greene, Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias. Thin Solid Films 518(21), 5978–5980 (2010). https://doi.org/10.1016/j.tsf.2010.05.064

    Article  CAS  Google Scholar 

  30. B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Mater. Trans. B 1(7), 1987–1995 (1970). https://doi.org/10.1007/BF02642799

    Article  CAS  Google Scholar 

  31. X.W. Fan, B. Chen, M.M. Zhang, First-principles calculations on bonding characteristic and electronic property of TiC (111)/TiN (111) interface. Mater. Des. 112, 282–289 (2016). https://doi.org/10.1016/j.matdes.2016.09.053

    Article  CAS  Google Scholar 

  32. S. Wang, H. Ye, Theoretical studies of solid–solid interfaces. Curr. Opin. Solid St M 10(1), 26–32 (2006). https://doi.org/10.1016/j.cossms.2006.06.001

    Article  CAS  Google Scholar 

  33. W.Y. Choe, G.J. Miller, E.M. Levin, Crystal structure and magnetism of Gd2MgGe2. J. Alloys Compd. 329, 121–130 (2001). https://doi.org/10.1016/S0925-8388(01)01568-7

    Article  CAS  Google Scholar 

  34. Y.F. Li, Y.M. Gao, B. Xiao, Theoretical calculations on the adhesion, stability, electronic structure, and bonding of Fe/WC interface. Appl. Surf. Sci. 257, 5671–5678 (2011). https://doi.org/10.1016/j.apsusc.2011.01.072

    Article  CAS  Google Scholar 

  35. J. Yang, J.H. Huang, D.Y. Fan, First-principles investigation on the electronic property and bonding configuration of NbC (111)/NbN (111) interface. J. Alloys Compd. 689, 874–884 (2016). https://doi.org/10.1016/j.jallcom.2016.08.040

    Article  CAS  Google Scholar 

  36. B.Y. Tong, L.J. Sham, Application of a self-consistent scheme including exchange and correlation effects to atoms. Phys. Rev. 144(1), 1–4 (1966). https://doi.org/10.1103/PhysRev.144.1

    Article  CAS  Google Scholar 

  37. G. Kresse, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  38. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  40. P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  CAS  Google Scholar 

  41. J.D. Pack, H.J. Monkhorst, Special points for brillouin-zone integrations—a reply. Phys. Rev. B 16(4), 1748–1749 (1997). https://doi.org/10.1103/PhysRevB.16.1746

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for projects supported by the National Natural Science Foundation of China (No.51771167 and No.51705447).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yefei Zhou or Qingxiang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3485 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, L., Liu, H., Shao, W. et al. Adhesion property and bonding characteristic between TiN and 2D-MoS2: A first-principles study. Journal of Materials Research 36, 1990–2000 (2021). https://doi.org/10.1557/s43578-021-00197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00197-3

Keywords

Navigation