Skip to main content

Advertisement

Log in

Superior volumetric capacitance of nitrogen and fluorine Co-doped holey graphene/PANI composite film for supercapacitor electrodes

  • Article
  • Focus Issue: Advanced Nanocatalysts for Electrochemical Energy Storage and Generation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

For the development of small portable energy storage devices with limited space, high volumetric capacitance which representing the chance of reducing the volume is becoming the most critical factor to the real industrial applications. Herein, we introduce a novel simple strategy to fabricate a free-standing binder-free N and F co-doped holey graphene/PANI (NFHG/PANI) composite film, in which the doping of nitrogen and fluorine in holey graphene nanosheets boosts the electron transfer efficiency and facilitates the polymerization and growth of aniline on the graphene surface in the form of nanoparticles. The NFHG/PANI performed a gravimetric capacitance of 580 F g−1 at a current density of 0.5 A g−1 and long-term cycling stability, more importantly, it delivered 828 F cm−3 superior volumetric capacitance at a high packing density. Apparently, such a free-standing NFHG/PANI composite film with excellent performance is of great significance for the development of miniaturized portable energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Afif, S.M. Rahman, A. Tasfiah Azad, J. Zaini, M.A. Islan, A.K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage: a review. J. Energy Storage 25, 100852 (2019)

    Article  Google Scholar 

  2. J. Wang, X. Zhang, Z. Li, Y. Ma, L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sour. 451, 227794 (2020)

    Article  CAS  Google Scholar 

  3. S.W. Bokhari, A.H. Siddique, P.C. Sherrell, X. Yue, K.M. Karumbaiah, S. Wei, A.V. Ellis, W. Gao, Advances in graphene-based supercapacitor electrodes. Energy Rep. 6, 2768 (2020)

    Article  Google Scholar 

  4. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  5. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268 (2017)

    Article  CAS  Google Scholar 

  6. Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5(1), 1 (2014)

    Article  Google Scholar 

  7. Y.B. Pottathara, H.R. Tiyyagura, Z. Ahmad, K.K. Sadasivuni, Graphene based aerogels: fundamentals and applications as supercapacitors. J. Energy Storage 30, 101549 (2020)

    Article  Google Scholar 

  8. S. Korkmaz, İA. Kariper, Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J. Energy Storage 27, 101038 (2020)

    Article  Google Scholar 

  9. Z. Yang, S. Chabi, Y. Xia, Y. Zhu, Preparation of 3D graphene-based architectures and their applications in supercapacitors. Prog. Nat. Sci. 25(6), 554 (2015)

    Article  CAS  Google Scholar 

  10. Z. Chen, X. An, L. Dai, Y. Xu, Holey graphene-based nanocomposites for efficient electrochemical energy storage. Nano Energy 73, 104762 (2020)

    Article  CAS  Google Scholar 

  11. Y. Xu, C.-Y. Chen, Z. Zhao, Z. Lin, C. Lee, X. Xu, C. Wang, Y. Huang, M.I. Shakir, X. Duan, Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15(7), 4605 (2015)

    Article  CAS  Google Scholar 

  12. S. Lei, X. Liu, X. Zhang, Z. Huang, C. He, Y. Yang, One-Pot hydrothermal approach to graphene/Poly(3,4-ethylenedioxythiophene) composites for high-capacitance supercapacitors. Mater. Today Commun. 20, 100549 (2019)

    Article  CAS  Google Scholar 

  13. J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, L. Wei, High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets. J. Power Sour. 346, 120 (2017)

    Article  CAS  Google Scholar 

  14. A. Sikdar, A. Majumdar, P. Dutta, M. Borah, S.O. Kim, U.N. Maiti, Ultra-large area graphene hybrid hydrogel for customized performance supercapacitors: high volumetric, areal energy density and potential wearability. Electrochim. Acta 332, 135492 (2020)

    Article  CAS  Google Scholar 

  15. P. Rani, V.K. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Adv. 3(3), 802 (2012)

    Article  Google Scholar 

  16. A. Lherbier, A.R. Botello-Méndez, J.-C. Charlier, Electronic and transport properties of unbalanced sublattice N-doping in graphene. Nano Lett. 13(4), 1446 (2013)

    Article  CAS  Google Scholar 

  17. R. Zbořil, F. Karlický, A.B. Bourlinos, T.A. Steriotis, A.K. Stubos, V. Georgakilas, K. Šafářová, D. Jančík, C. Trapalis, M. Otyepka, Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24), 2885 (2010)

    Article  Google Scholar 

  18. S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang, M. Liu, A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sour. 387, 43 (2018)

    Article  CAS  Google Scholar 

  19. I.I. Misnon, R. Jose, Synthesis and electrochemical evaluation of the PANI/δ-MnO2 electrode for high performing asymmetric supercapacitors. J. Chem. 41(14), 6574 (2017)

    CAS  Google Scholar 

  20. I.I. Misnon, S.G. Krishnan, R. Jose, Thin chemisorbed polyaniline film on cobalt oxide as an electrode for hybrid energy storage devices. ChemistrySelect 5(26), 7973 (2020)

    Article  Google Scholar 

  21. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324 (2010)

    Article  CAS  Google Scholar 

  22. H. An, Y. Li, P. Long, Y. Gao, C. Qin, C. Cao, Y. Feng, W. Feng, Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sour. 312, 146 (2016)

    Article  CAS  Google Scholar 

  23. J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie, X. Wang, Q. Wu, L. Yang, Z. Jin, Y. Ma, J. Liu, Z. Hu, Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27(23), 3541 (2015)

    Article  CAS  Google Scholar 

  24. M. Yu, J. Zhang, S. Li, Y. Meng, J. Liu, Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells. J. Power Sour. 308, 44 (2016)

    Article  CAS  Google Scholar 

  25. Y. Bai, X. Yang, Y. He, J. Zhang, L. Kang, H. Xu, F. Shi, Z. Lei, Z.-H. Liu, Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochim. Acta 187, 543 (2016)

    Article  CAS  Google Scholar 

  26. S. Chowdhury, R. Balasubramanian, Holey graphene frameworks for highly selective post-combustion carbon capture. Sci. Rep. 6(1), 21537 (2016)

    Article  CAS  Google Scholar 

  27. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4(8), 2826 (2011)

    Article  CAS  Google Scholar 

  28. M. Moussa, Z. Zhao, M.F. El-Kady, H. Liu, A. Michelmore, N. Kawashima, P. Majewski, J. Ma, Free-standing composite hydrogel films for superior volumetric capacitance. J. Mater. Chem. A 3(30), 15668 (2015)

    Article  CAS  Google Scholar 

  29. J. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 116(9), 5420 (2012)

    Article  CAS  Google Scholar 

  30. H. Zhang, T. Kuila, N.H. Kim, D.S. Yu, J.H. Lee, Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 69, 66 (2014)

    Article  Google Scholar 

  31. Z. Li, G.D. Del Cul, W. Yan, C. Liang, S. Dai, Fluorinated carbon with ordered mesoporous structure. J. Am. Chem. Soc. 126(40), 12782 (2004)

    Article  CAS  Google Scholar 

  32. S. Zhou, S.D. Sherpa, D.W. Hess, A. Bongiorno, Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C 118(45), 26402 (2014)

    Article  CAS  Google Scholar 

  33. Y. Wang, X. Yang, A.G. Pandolfo, J. Ding, D. Li, High-rate and high-volumetric capacitance of compact graphene–polyaniline hydrogel electrodes. Adv. Energy Mater. 6(11), 1600185 (2016)

    Article  Google Scholar 

  34. N.Q. Tran, B.K. Kang, M.H. Woo, D.H. Yoon, Enrichment of pyrrolic nitrogen by hole defects in nitrogen and sulfur co-doped graphene hydrogel for flexible supercapacitors. Chemsuschem 9(16), 2261 (2016)

    Article  CAS  Google Scholar 

  35. J. Zhou, J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T.A. Strobel, L. Tao, F. Gao, Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 6(1), 8503 (2015)

    Article  CAS  Google Scholar 

  36. P. Yu, X. Zhao, Z. Huang, Y. Li, Q. Zhang, Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J. Mater. Chem. A 2(35), 14413 (2014)

    Article  CAS  Google Scholar 

  37. X. Wang, L. Lv, Z. Cheng, J. Gao, L. Dong, C.-G. Hu, L. Qu, High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv. Energy Mater. 6, 1502100 (2016)

    Article  Google Scholar 

  38. X. Liu, Y. Zheng, X. Wang, Controllable preparation of polyaniline–graphene nanocomposites using functionalized graphene for supercapacitor electrodes. Chemistry 21(29), 10408 (2015)

    Article  CAS  Google Scholar 

  39. L. Lai, L. Wang, H. Yang, N.G. Sahoo, Q.X. Tam, J. Liu, C.K. Poh, S.H. Lim, Z. Shen, J. Lin, Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy 1(5), 723 (2012)

    Article  CAS  Google Scholar 

  40. Y. Zhang, L. Ji, W. Li, Z. Zhang, L. Lu, L. Zhou, J. Liu, Y. Chen, L. Liu, W. Chen, Y. Zhang, Highly defective graphite for scalable synthesis of nitrogen doped holey graphene with high volumetric capacitance. J. Power Sour. 334, 104 (2016)

    Article  CAS  Google Scholar 

  41. J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014)

    Article  Google Scholar 

  42. J. Yan, Q. Wang, T. Wei, L. Jiang, M. Zhang, X. Jing, Z. Fan, Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8(5), 4720 (2014)

    Article  CAS  Google Scholar 

  43. Y.H. Kim, Y.J. Choi, B.H. Park, S.B. Choi, S.-G. Kim, K.-B. Kim, Competing effects of potassium hydroxide activation of graphene on gravimetric and volumetric capacitances. J. Power Sour. 479, 229076 (2020)

    Article  CAS  Google Scholar 

  44. X. Liang, R. Liu, X. Wu, Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous Mesoporous Mater. 310, 110659 (2021)

    Article  CAS  Google Scholar 

  45. Q. Xie, G. Chen, R. Bao, Y. Zhang, S. Wu, Polystyrene foam derived nitrogen-enriched porous carbon/graphene composites with high volumetric capacitances for aqueous supercapacitors. Microporous Mesoporous Mater. 239, 130 (2017)

    Article  CAS  Google Scholar 

  46. G. Lian, C.-C. Tuan, L. Li, S. Jiao, K.-S. Moon, Q. Wang, D. Cui, C.-P. Wong, Ultrafast molecular stitching of graphene films at the ethanol/water interface for high volumetric capacitance. Nano Lett. 17(3), 1365 (2017)

    Article  CAS  Google Scholar 

  47. M. Yao, Y. Chen, Z. Wang, C. Shao, J. Dong, Q. Zhang, L. Zhang, X. Zhao, Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors. Chem. Eng. J. 395, 124057 (2020)

    Article  CAS  Google Scholar 

  48. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. U1733130, and 81772432); Basic Research Field of Shanghai Science and Technology Innovation Program (Grant Nos. 16JC1401500); Science and Technology Innovation Special Zone Program (Grant Nos. 18-163-13-ZT-008-003-06); CALT Foundation; Cross Research Fund of Biomedical Engineering of Shanghai Jiao Tong University (Grant Nos. YG2016MS70, YG2017MS11); and Joint Foundation from the Ministry of Education of China (Grant Nos. 6141A02022264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Guo, R., Li, H. et al. Superior volumetric capacitance of nitrogen and fluorine Co-doped holey graphene/PANI composite film for supercapacitor electrodes. Journal of Materials Research 36, 4169–4181 (2021). https://doi.org/10.1557/s43578-021-00179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00179-5

Keywords

Navigation