Skip to main content
Log in

Increase of the mechanical response of pure aluminum by grain refinement retained with an alternative rapid sintering route

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-frequency induction heating is frequently used to consolidate solid pieces of refractory ceramics. However, this valuable technique has not been deeply evaluated for sample preparation in light metal-based systems as an economical and feasible alternative for rapid sintering routes such as spark plasma sintering. This work deals with the potential use of induction heating to produce highly densified samples with refined microstructure, enhanced mechanical properties, and lower oxygen contamination. Here we demonstrate that induction-sintering can increase the hardness and yield strength in 70 and 80% respectively, compared to a commercial hardened alloy (AA-1350-H19). Theoretical calculations demonstrate that this behavior can be attributed to two main reinforcement mechanisms: dislocations obstruction and grain refinement. The increased mechanical response can be imputed to the effective sub-micron microstructure retention due to its shorter processing time and lower temperature compared to the conventional sintering process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R.B. Kalombo, J.M.G. Martínez, J.L.A. Ferreira, C.R.M. Da Silva, J.A. Araújo, Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: tests and analysis. Procedia Eng. 133, 223–232 (2015). https://doi.org/10.1016/j.proeng.2015.12.662

    Article  CAS  Google Scholar 

  2. L.R. Zeng, Z.M. Song, X.M. Wu, C.H. Li, G.P. Zhang, Fatigue cracking behavior of 6063 aluminum alloy for fitting clamps of overhead conductor lines. Mater. Des. 88, 478–484 (2015). https://doi.org/10.1016/j.matdes.2015.09.021

    Article  CAS  Google Scholar 

  3. I.J. Shon, K. Il Na, C.Y. Suh, S.W. Cho, S.H. Oh, W. Kim, Rapid consolidation of nanocrystalline Ti3Al-Al2O3 composites from mechanically synthesized powders by high frequency induction heated sintering. Met. Mater. Int. 17, 737–741 (2011). https://doi.org/10.1007/s12540-011-1007-1

    Article  CAS  Google Scholar 

  4. E. Ghasali, M. Alizadeh, T. Ebadzadeh, A.H. Pakseresht, A. Rahbari, Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering. J. Mater. Res. Technol. 4, 411–415 (2015). https://doi.org/10.1016/j.jmrt.2015.02.005

    Article  CAS  Google Scholar 

  5. L.A. Yolshina, R.V. Muradymov, I.V. Korsun, G.A. Yakovlev, S.V. Smirnov, Novel aluminum-graphene and aluminum-graphite metallic composite materials: synthesis and properties. J. Alloys Compd. 663, 449–459 (2016). https://doi.org/10.1016/j.jallcom.2015.12.084

    Article  CAS  Google Scholar 

  6. S. Karabay, Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors. Mater. Des. 27, 821–832 (2006). https://doi.org/10.1016/j.matdes.2005.06.005

    Article  CAS  Google Scholar 

  7. Z. Wang, H. Li, F. Miao, B. Fang, R. Song, Z. Zheng, Improving the strength and ductility of Al-Mg-Si-Cu alloys by a novel thermo-mechanical treatment. Mater. Sci. Eng., A 607, 313–317 (2014). https://doi.org/10.1016/j.msea.2014.04.009

    Article  CAS  Google Scholar 

  8. B. Liu, X. Zhou, T. Hashimoto, X. Zhang, J. Wang, Machining introduced microstructure modification in aluminium alloys. J. Alloys Compd. 757, 233–238 (2018). https://doi.org/10.1016/j.jallcom.2018.05.082

    Article  CAS  Google Scholar 

  9. D.J. Lloyd, I. Jin, Melt processed aluminum matrix particle reinforced composites. Compr. Compos. Mater. (2000). https://doi.org/10.1016/b0-08-042993-9/00020-6

    Article  Google Scholar 

  10. Y.B. Yuan, Z.W. Wang, R.X. Zheng, X.N. Hao, K. Ameyama, C.L. Ma, Effect of mechanical alloying and sintering process on microstructure and mechanical properties of Al-Ni-Y-Co-La alloy. Trans. Nonferrous Met. Soc. China 24, 2251–2257 (2014). https://doi.org/10.1016/S1003-6326(14)63341-0

    Article  CAS  Google Scholar 

  11. I. Marek, D. Vojtěch, A. Michalcová, T.F. Kubatík, High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering. Mater. Sci. Eng., A 627, 326–332 (2015). https://doi.org/10.1016/j.msea.2015.01.014

    Article  CAS  Google Scholar 

  12. C. Suryanarayana, Structure and properties of nanocrystalline materials. Bull. Mater. Sci. 17, 307–346 (1994)

    Article  CAS  Google Scholar 

  13. I.J. Shon, S.L. Du, I.Y. Ko, T.W. Kim, J.M. Doh, J.K. Yoon, S.W. Park, Mechanical synthesis and rapid consolidation of a nanocrystalline 5.33Fe0.37Cr0.16Al0.4Si0.07-Al2O3 composite by high-frequency induction heating. Ceram. Int. 37, 1353–1357 (2011). https://doi.org/10.1016/j.ceramint.2010.12.008

    Article  CAS  Google Scholar 

  14. N.R. Park, I.Y. Ko, J.M. Doh, W.Y. Kong, J.K. Yoon, I.J. Shon, Rapid consolidation of nanocrystalline 3Ni-Al2O3 composite from mechanically synthesized powders by high frequency induction heated sintering. Mater. Charact. 61, 277–282 (2010). https://doi.org/10.1016/j.matchar.2009.12.001

    Article  CAS  Google Scholar 

  15. S. Jana, R.S. Mishra, J.A. Baumann, G.J. Grant, Effect of friction stir processing on microstructure and tensile properties of an investment cast Al-7Si-0.6 Mg alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41, 2507–2521 (2010). https://doi.org/10.1007/s11661-010-0324-1

    Article  CAS  Google Scholar 

  16. B. Gwalani, M. Olszta, S. Varma, L. Li, A. Soulami, E. Kautz, S. Pathak, A. Rohatgi, P.V. Sushko, S. Mathaudhu, C.A. Powell, A. Devaraj, Extreme shear-deformation-induced modification of defect structures and hierarchical microstructure in an Al–Si alloy. Commun. Mater. 1, 1–7 (2020). https://doi.org/10.1038/s43246-020-00087-x

    Article  Google Scholar 

  17. C. Suryanarayana, I.-S. An, Mechanical alloying and milling. J. Korean Powder Metall. Inst. 13, 371–372 (2006). https://doi.org/10.4150/KPMI.2006.13.5.371

    Article  Google Scholar 

  18. N.R. Park, D.M. Lee, I.Y. Ko, J.K. Yoon, I.J. Shon, Rapid consolidation of nanocrystalline Al2O3 reinforced Ni-Fe composite from mechanically alloyed powders by high frequency induction heated sintering. Ceram. Int. 35, 3147–3151 (2009). https://doi.org/10.1016/j.ceramint.2009.05.006

    Article  CAS  Google Scholar 

  19. G.S. Upadhyaya, Some issues in sintering science and technology. Mater. Chem. Phys. 67, 1–5 (2001). https://doi.org/10.1016/S0254-0584(00)00411-9

    Article  CAS  Google Scholar 

  20. K. Do Woo, B.R. Kim, E.P. Kwon, D.S. Kang, I.J. Shon, Properties and rapid consolidation of nanostructured TiC-based hard materials with various binders by a high-frequency induction heated sintering. Ceram. Int. 36, 351–355 (2010). https://doi.org/10.1016/j.ceramint.2009.09.005

    Article  CAS  Google Scholar 

  21. I.J. Shon, I.K. Jeong, I.Y. Ko, J.M. Doh, K. Do Woo, Sintering behavior and mechanical properties of WC-10Co, WC-10Ni and WC-10Fe hard materials produced by high-frequency induction heated sintering. Ceram. Int. 35, 339–344 (2009). https://doi.org/10.1016/j.ceramint.2007.11.003

    Article  CAS  Google Scholar 

  22. H.C. Kim, I.J. Shon, J.K. Yoon, J.M. Doh, Z.A. Munir, Rapid sintering of ultrafine WC-Ni cermets. Int. J. Refract. Met. Hard Mater. 24, 427–431 (2006). https://doi.org/10.1016/j.ijrmhm.2005.07.002

    Article  CAS  Google Scholar 

  23. H.-C. Kim, D.-K. Kim, K.-D. Woo, I.-Y. Ko, I.-J. Shon, Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int. J. Refract. Metals Hard Mater. 26, 48–54 (2008)

    Article  CAS  Google Scholar 

  24. I.J. Shon, H.S. Oh, J.W. Lim, H. Kwon, Mechanical properties and consolidation of binderless nanostructured (Ti, Cr)C from mechanochemically-synthesized powder by high-frequency induction heating sintering. Ceram. Int. 39, 9721–9726 (2013). https://doi.org/10.1016/j.ceramint.2013.04.053

    Article  CAS  Google Scholar 

  25. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  26. M. Mansoor, M. Shahid, Carbon nanotube-reinforced aluminum composite produced by induction melting. J. Appl. Res. Technol. 14, 215–224 (2016). https://doi.org/10.1016/j.jart.2016.05.002

    Article  Google Scholar 

  27. A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  Google Scholar 

  28. J.Y. Yoo, I.J. Shon, B.H. Choi, K.T. Lee, Fabrication and characterization of a Ni-YSZ anode support using high-frequency induction heated sintering (HFIHS). Ceram. Int. 37, 2569–2574 (2011). https://doi.org/10.1016/j.ceramint.2011.04.002

    Article  CAS  Google Scholar 

  29. I.J. Shon, I.Y. Ko, H.S. Kang, K.T. Hong, J.M. Doh, J.K. Yoon, Properties and rapid consolidation of nanostructured Al2O3-Al2SiO5 composites by high frequency induction heated sintering. Ceram. Int. 37, 2159–2164 (2011). https://doi.org/10.1016/j.ceramint.2011.03.060

    Article  CAS  Google Scholar 

  30. I.J. Shon, I.Y. Ko, S.M. Chae, K. Il Na, Rapid consolidation of nanostructured TaSi2 from mechanochemically synthesized powder by high frequency induction heated sintering. Ceram. Int. 37, 679–682 (2011). https://doi.org/10.1016/j.ceramint.2010.09.054

    Article  CAS  Google Scholar 

  31. I.J. Shon, S.H. Jo, J.M. Doh, J.K. Yoon, B.J. Park, Mechanical synthesis and rapid consolidation of nanostructured FeAl-Al2O3 composites by high-frequency induction heated sintering. Ceram. Int. 38, 6035–6039 (2012). https://doi.org/10.1016/j.ceramint.2012.03.073

    Article  CAS  Google Scholar 

  32. S.J. Park, N.H. Heung, H.O. Kyu, N.L. Dong, Model for compaction of metal powders. Int. J. Mech. Sci. 41, 121–141 (1999). https://doi.org/10.1016/S0020-7403(98)00022-8

    Article  Google Scholar 

  33. Höganäs AB, Höganäs (2013) Handbook for Sintered Components Power of Powder ® Production of Sintered Components 2. www.hoganas.com/pmc

  34. A.S. Jabur, Effect of powder metallurgy conditions on the properties of porous bronze. Powder Technol. 237, 477–483 (2013). https://doi.org/10.1016/j.powtec.2012.12.027

    Article  CAS  Google Scholar 

  35. M. Zhou, S. Huang, J. Hu, Y. Lei, F. Zou, S. Yan, M. Yang, Experiment and finite element analysis of compaction densification mechanism of Ag-Cu-Sn-In mixed metal powder. Powder Technol. 313, 68–81 (2017). https://doi.org/10.1016/j.powtec.2017.03.015

    Article  CAS  Google Scholar 

  36. B. Henriques, D. Soares, J.C. Teixeira, F.S. Silva, Effect of hot pressing variables on the microstructure, relative density and hardness of sterling silver (Ag-Cu alloy) powder compacts. Mater. Res. 17, 664–671 (2014). https://doi.org/10.1590/S1516-14392014005000022

    Article  CAS  Google Scholar 

  37. F.A. Mirza, D.L. Chen, A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites. Materials 8, 5138–5153 (2015). https://doi.org/10.3390/ma8085138

    Article  CAS  Google Scholar 

  38. W.D. Wong-Ángel, L. Téllez-Jurado, E. Chavira-Martínez, J.F. Chávez-Alcalá, E. Rocha-Rangel, Effect of carbon on the density, microstructure and hardness of alloys formed by mechanical alloying. Mater. Des. 60, 605–611 (2014). https://doi.org/10.1016/j.matdes.2014.04.039

    Article  CAS  Google Scholar 

  39. A. Güral, S. Tekeli, Microstructural characterization of intercritically annealed low alloy PM steels. Mater. Des. 28, 1224–1230 (2007). https://doi.org/10.1016/j.matdes.2006.01.007

    Article  CAS  Google Scholar 

  40. N.S. Anas, M. Ramakrishna, R.K. Dash, T.N. Rao, R. Vijay, Influence of process control agents on microstructure and mechanical properties of Al alloy produced by mechanical alloying. Mater. Sci. Eng., A 751, 171–182 (2019)

    Article  CAS  Google Scholar 

  41. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141–155 (2014). https://doi.org/10.1016/j.actamat.2013.09.042

    Article  CAS  Google Scholar 

  42. T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V.S. Sarma, On the Hall-Petch relationship in a nanostructured Al-Cu alloy. Mater. Sci. Eng., A 527, 7821–7825 (2010). https://doi.org/10.1016/j.msea.2010.08.070

    Article  CAS  Google Scholar 

  43. I. Estrada-Guel, J.L. Cardoso, C. Careño-Gallardo, J.I. Barajas-Villaruel, M. Miki-Yoshida, J.M. Herrera-Ramírez, R. Martínez-Sánchez, Mechanical study on Al-based composites synthesized by mechanical milling and hot extrusion (Trans Tech Publications Ltd., Zurich, 2011). https://doi.org/10.4028/www.scientific.net/MSF.691.37

    Book  Google Scholar 

  44. J.M. Mendoza-Duarte, I. Estrada-Guel, C. Carreño-Gallardo, R. Martínez-Sánchez, Study of Al composites prepared by high-energy ball milling; effect of processing conditions. J. Alloys Compd. 643, S172–S177 (2015). https://doi.org/10.1016/j.jallcom.2015.01.018

    Article  CAS  Google Scholar 

  45. J. ManuelMendoza-Duarte, I. Estrada-Guel, F.C. Robles-Hernandez, C. Carreño-Gallardo, C. López-Meléndez, R. Martínez-Sánchez, Mechanical and microstructural response of an aluminum nanocomposite reinforced with carbon-based particles. Mater. Res. (2016). https://doi.org/10.1590/1980-5373-MR-2015-0625

    Article  Google Scholar 

  46. M. Baig, H.R. Ammar, A.H. Seikh, Thermo-mechanical responses of nanocrystalline Al-Fe alloy processed using mechanical alloying and high frequency heat induction sintering. Mater. Sci. Eng. A 655, 132–141 (2016). https://doi.org/10.1016/j.msea.2015.12.077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank D. Lardizabal-Gutierrez for his valuable technical assistance and C. Leyva, K. Campos., and E. Lestarjette for their help with SEM and XRD characterization for the experimental part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Estrada-Guel.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Duarte, J.M., Robles-Hernandez, F.C., Rocha-Rangel, E. et al. Increase of the mechanical response of pure aluminum by grain refinement retained with an alternative rapid sintering route. Journal of Materials Research 36, 1328–1340 (2021). https://doi.org/10.1557/s43578-021-00176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00176-8

Keywords

Navigation