Abstract
Magnesium alloys have great potential for load-bearing biodegradable orthopedic implants. The mechanical properties and corrosion resistance depend on alloy composition and processing technique. Presently, the effect of processing techniques on the properties of Mg alloys containing small additions of Sn and 0.04Mn is investigated. Mg–xSn–0.04Mn alloys (x = 0.25 and 1.53wt%) were prepared by casting, heat treatment, hot extrusion, and hot rolling. Microstructure was investigated by optical microscopy, SEM, and XRD. The type, size, and volume fraction of precipitates were found to play the major role in determination of mechanical properties and rate of dissolution in Hank’s solution. A considerable rise in strength, ductility, and reduction in dissolution rate were obtained after thermomechanical treatment based on grain size, volume fraction, and distribution of precipitates. Extruded Mg–1.53Sn–0.04Mn alloy exhibited the best combination of strength, ductility and biodegradability by exhibiting a strength of 219.6 MPa, elongation of 7.9%, and corrosion rate of 0.71 mm/y, indicating that it is indeed a promising candidate for biodegradable orthopedic applications.
Graphic abstract
Similar content being viewed by others
References
M. Wolff, J.G. Schaper, M.R. Suckert, M. Dahms, T. Ebel, R. Willumeit-Römer, T. Klassen, Magnesium powder injection molding (MIM) of orthopedic implants for biomedical applications. JOM (2016). https://doi.org/10.1007/s11837-016-1837-xM
S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. Anand Chairman, R. Balasundaram, Mechanical properties and applications of magnesium alloy—review. Mater. Today 27, 909–913 (2020). https://doi.org/10.1016/j.matpr.2020.01.255
Z. Zhen, X. Liu, T. Huang, T. Fei Xi, Y. Zheng, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater. Sci. Eng. C 46, 202–206 (2015). https://doi.org/10.1016/j.msec.2014.08.038
A.M. Inamuddin, A. Mohammad-Asiri (eds.), Applications of Nanocomposite Materials in Orthopedics (Woodhead Publishing, Duxford, 2019), pp. 83–109
J.-M. Seitz, U. Bormann, K. Collier, E. Wulf, R. Eifler, F.-W. Bach, Application of a bioactive coating on resorbable, neodymium containing magnesium alloys, and analyses of their effects on the in vitro degradation behavior in a simulated body fluid. Adv. Eng. Mater. (2012). https://doi.org/10.1002/adem.201180078
N. Li, Y. Zheng, Novel magnesium alloys developed for biomedical application: a review. J. Mater. Sci. Technol. 29(6), 489–502 (2013). https://doi.org/10.1016/j.jmst.2013.02.005
S. Cai, T. Lei, N. Li, F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater. Sci. Eng., C 32, 2570–2577 (2012). https://doi.org/10.1016/j.msec.2012.07.042
C.H. Ku, D.P. Pioletti, M. Browne, P.J. Gregson, Effect of different Ti–6Al–4V surface treatments on osteoblasts behavior. Biomaterials 23(6), 1447–1454 (2002). https://doi.org/10.1016/S0142-9612(01)00266-6
N. Yumiko, T. Yukari, T. Yasuhide, S. Tadashi, I. Yoshio, Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam. Appl. Toxicol. 37, 106–116 (1997). https://doi.org/10.1006/faat.1997.2322
X. Gu, Y. Cheng, S. Zhong, T. Zi, In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30, 484–498 (2009). https://doi.org/10.1016/j.biomaterials.2008.10.021
H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, “The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)%Sn alloys. J. Alloys Compd. 440, 122–126 (2007). https://doi.org/10.1016/j.jallcom.2006.09.024
C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, A. Tang, Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification. Mater. Sci. Eng. C 54, 245–251 (2015). https://doi.org/10.1016/j.msec.2015.05.042
H.-Y. Ha, J.-Y. Kang, S.G. Kim, B. Kim, S.S. Park, C.D. Yim, B.S. You, Influences of metallurgical factors on the corrosion behavior of extruded binary Mg–Sn alloys. Corros. Sci. 82, 369–379 (2014). https://doi.org/10.1016/j.corsci.2014.01.035
Z. Zhen, T. Xi, Y. Zheng, L. Li, L. Li, In vitro study on Mg–Sn–Mn alloy as biodegradable metals. J. Mater. Sci. Technol. 30(7), 675–685 (2014). https://doi.org/10.1016/j.jmst.2014.04.005
M. Wolff, J.G. Schaper, M.R. Suckert, T. Klassen, Magnesium powder injection molding (MIM) of orthopedic implants for biomedical applications. JOM 68(4), 1191–1197 (2016). https://doi.org/10.1007/s11837-016-1837-x
P. Han, P. Cheng, S. Zhang, C. Zhao, J. Ni, Y. Zhang, W. Zhonga, P. Hou, X. Zhang, Y. Zheng, Y. Chai, In vitro and in vivo studies on the degradation of high-purity Mg (99.99 wt.%) screw with femoral intercondylar fractured rabbit model. Biomaterials 64, 57–69 (2015). https://doi.org/10.1016/j.biomaterials.2015.06.031
F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. Löffler, Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomater. 98, 36–49 (2019)
Y. Yang, C. He, E. Dianyu, W. Yang, F. Qi, D. Xie, L. Shen, S. Peng, C. Shuai, Mg bone implant: features, developments and perspectives. Mater. Des. 185, 108259 (2020)
J.-M. Seitz, A. Lucas, M. Kirschner, Magnesium-based compression screws: a novelty in the clinical use of implants. JOM 68(4), 1177–1182 (2016). https://doi.org/10.1007/s11837-015-1773-1
Y. Zeng, B. Jiang, R. Li, H. Yin, S. Al-Ezzi, Grain refinement mechanism of the As-cast and As-extruded Mg–14Li alloys with Al or Sn addition. Metals 7, 172 (2017). https://doi.org/10.3390/met7050172
A. Alia Diaa, Effect of alloying elements and processing techniques on the properties of some magnesium alloys, Master of Science in Mechanical Engineering, Ain Shams University, Faculty of Engineering, Cairo, Egypt (2017). http://main.eulc.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12418137.
H. Okamoto, P.R. Subramanian, L. Kacprzak (eds.), Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, 1990), p. 1702
J.T. Black, DeGarmo’s Materials and Processes in Manufacturing (12th Ed.) (Wiley, Hoboken, NJ, 2017).
B.G. Thomas, Metals processing, Chapter 14, in Structure, Processing, and Properties of Engineering Materials. ed. by J. Adams (Addison Wesley, New York, 2000)
N. El Mahallawy, R. Hammouda, M. Shoeib, A. Diaa, Effect of solution treatment on the microstructure, tensile properties, and corrosion behavior of the Mg–5Sn–2Zn–0.1Mn alloy. Mater. Res. Express 5, 016511 (2018). https://doi.org/10.1088/2053-1591/aaa349
W.N. Tang, S.S. Park, B.S. You, Effect of the Zn content on the microstructure and mechanical properties of indirect-extruded Mg–5Sn–xZn alloys. Mater Design 32, 3537–3543 (2011). https://doi.org/10.1016/j.matdes.2011.02.012
T. Ding, H. Yan, J.-H. Chen, W.-J. Xia, B. Su, Z.-L. Yu, Dynamic recrystallization and mechanical properties of high-strain-rate hot rolled Mg–5Zn alloys with addition of Ca and Sr. Trans. Nonferr. Met. Soc. China 29(8), 1631–2164 (2019)
N. El Mahallawy, A. Diaa, M. Akdesir, H. Palkowski, Effect of Zn addition on the microstructure and mechanical properties of cast, rolled and extruded Mg-6Sn-xZn alloys. Mater. Sci. Eng. A 680, 47–53 (2017). https://doi.org/10.1016/j.msea.2016.10.075
Y.V.R.K. Prasad, K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: anisotropy of hot workability. Mater. Sci. Eng. A 487, 316–327 (2008)
N. El-Mahallawy, H. Palkowski, A. Klingner, A. Diaa, M. Shoeib, Effect of 10 wt% Zn addition on the microstructure, mechanical properties, and bio-corrosion behaviour of micro alloyed Mg-024Sn-004Mn alloy as biodegradable material. Mater. Today Commun. 24, 100999 (2020). https://doi.org/10.1016/j.mtcomm.2020.100999
N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behavior of AZ31B magnesium alloy. Corr. Sci. 52, 589–594 (2010)
Z.-Z. Shi, J.-Y. Xu, J. Yu, X.-F. Liu, Microstructure and Mechanical Properties of as–cast and as hot-rolled novel Mg-xSn-2.5Zn-2Al alloys (x=2, 4 wt%). Mater. Sci. Eng. A 712, 65–72 (2018). https://doi.org/10.1016/j.msea.2017.11.094
D.H. Cho, B.W. Lee, J. Young, P. Kyung, M. Choik, M. Park, Effect of Mn addition on corrosion properties of biodegradableMg-4Zn-0.5Ca-xMn alloys. J. Alloys Compd. 695, 1166–1174 (2017). https://doi.org/10.1016/j.jallcom.2016.10.244
E. Zhang, D. Yin, L. Xu, L. Yang, K. Yang, Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater. Sci. Eng. C 29, 987–993 (2009). https://doi.org/10.1016/j.msec.2008.08.024
M.R. Barnett, Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng. A 464(1–2), 1–7 (2007). https://doi.org/10.1016/j.msea.2006.12.037
S. Wei, T. Zhu, M. Hodgson, W. Gao, Effects of Sn addition on the microstructure and mechanical properties of as-cast, rolled and annealed Mg–4Zn alloys. Mater. Sci. Eng. A 585, 139–148 (2013). https://doi.org/10.1016/j.msea.2013.07.051
J. Wang, X. Zhang, Twinning effects on strength and plasticity of metallic materials. MRS Bull. 4, 274–281 (2016). https://doi.org/10.1557/mrs.2016.67
D. Chen, Y. He, H. Tao, Y. Zhang, Y. Jiang, X. Zhang, S. Zhang, Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants. Int. J. Mol. Med. 28, 343–348 (2011). https://doi.org/10.3892/ijmm.2011.707
K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis, Corrosion of magnesium alloys: the role of alloying. Int. Mater. Rev. 60(3), 169–194 (2015). https://doi.org/10.1179/1743280414Y.0000000046
F. Cao, G.-L. Song, A. Atrens, Corrosion and passivation of magnesium alloys. Corros. Sci. 111, 835–845 (2016). https://doi.org/10.1016/j.corsci.2016.05.041
C.-Y. Zhao, F.-S. Pan, H.-C. Pan, Microstructure, mechanical and bio-corrosion properties of as-extruded Mg−Sn−Ca alloys. Trans. Nonferrous Met. Soc. China 26, 1574–1582 (2016). https://doi.org/10.1016/S1003-6326(16)64232-2
M.-C. Zhao, M. Liu, G. Song, A. Atrens, Influence of the b-phase morphology on the corrosion of the Mg alloy AZ91. Corros. Sci. 50, 1939–1953 (2008). https://doi.org/10.1016/j.corsci.2008.04.010
T. Zhang, Y. Shao, G. Meng, Z. Cui, F. Wang, Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior. Corros. Sci. 53, 1960–1968 (2011). https://doi.org/10.1016/j.corsci.2011.02.015
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626–640 (2010). https://doi.org/10.1016/j.actbio.2009.06.028
Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10), 1329 (2008). https://doi.org/10.1016/j.biomaterials.2007.12.021
W.L. Cheng, S.S. Park, B.S. You, B.H. Koo, Microstructure and mechanical properties of binary Mg–Sn alloys subjected to indirect extrusion. Mater. Sci. Eng. A 527, 4650–4653 (2010)
X. Zhang, G. Yuan, L. Mao, J. Niu, W. Ding, Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Mater. Lett. 66, 209–211 (2012). https://doi.org/10.1016/j.matlet.2011.08.079
N. Aung, W. Zhou, Effect of grain size and twins on corrosion behavior of AZ31B magnesium alloy. Corros. Sci. 52, 589–594 (2010). https://doi.org/10.1016/j.corsci.2009.10.018
Y. Liu, D. Liu, C. You et al., Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification. Front. Mater. Sci. 9, 247–253 (2015). https://doi.org/10.1007/s11706-015-0299-3
K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater. 63, 1201–1204 (2010). https://doi.org/10.1016/j.scriptamat.2010.08.035
W.-L. Cheng, S.-C. Ma, Y. Bai, Z.-Q. Cui, H.-X. Wang, Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: the influence of microstructural characteristics. J. Alloys Compd. 731, 945–954 (2018). https://doi.org/10.1016/j.jallcom.2017.10.073
S. Hiromoto, A. Yamamoto, High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochim. Acta 54, 7085–7093 (2009). https://doi.org/10.1016/j.electacta.2009.07.033
J. Bohlen, G. Cano, D. Drozdenko, P. Dobron, K.U. Kainer, S. Gall, S. Müller, D. Letzighe, Processing effects on the formability of magnesium alloy sheets. Metals 8, 147 (2018). https://doi.org/10.3390/met8020147
Acknowledgments
This work was supported by the DAAD/BMBF project no 57128284, “Biodegradable Materials for Bone Fixation and Healing (BMBFH): Modelling, Simulation, Material-Design, and Bio-Testing” in the period of 2016-2018.
Author information
Authors and Affiliations
Corresponding author
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
El-Mahallawy, N., Palkowski, H., Breitinger, HG. et al. Microstructure, mechanical properties, cytotoxicity, and bio-corrosion of micro-alloyed Mg–xSn–0.04Mn alloys for biodegradable orthopedic applications: Effect of processing techniques. Journal of Materials Research 36, 1456–1474 (2021). https://doi.org/10.1557/s43578-021-00172-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00172-y