Skip to main content
Log in

Microstructure, mechanical properties, cytotoxicity, and bio-corrosion of micro-alloyed Mg–xSn–0.04Mn alloys for biodegradable orthopedic applications: Effect of processing techniques

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnesium alloys have great potential for load-bearing biodegradable orthopedic implants. The mechanical properties and corrosion resistance depend on alloy composition and processing technique. Presently, the effect of processing techniques on the properties of Mg alloys containing small additions of Sn and 0.04Mn is investigated. Mg–xSn–0.04Mn alloys (x = 0.25 and 1.53wt%) were prepared by casting, heat treatment, hot extrusion, and hot rolling. Microstructure was investigated by optical microscopy, SEM, and XRD. The type, size, and volume fraction of precipitates were found to play the major role in determination of mechanical properties and rate of dissolution in Hank’s solution. A considerable rise in strength, ductility, and reduction in dissolution rate were obtained after thermomechanical treatment based on grain size, volume fraction, and distribution of precipitates. Extruded Mg–1.53Sn–0.04Mn alloy exhibited the best combination of strength, ductility and biodegradability by exhibiting a strength of 219.6 MPa, elongation of 7.9%, and corrosion rate of 0.71 mm/y, indicating that it is indeed a promising candidate for biodegradable orthopedic applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M. Wolff, J.G. Schaper, M.R. Suckert, M. Dahms, T. Ebel, R. Willumeit-Römer, T. Klassen, Magnesium powder injection molding (MIM) of orthopedic implants for biomedical applications. JOM (2016). https://doi.org/10.1007/s11837-016-1837-xM

    Article  Google Scholar 

  2. S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. Anand Chairman, R. Balasundaram, Mechanical properties and applications of magnesium alloy—review. Mater. Today 27, 909–913 (2020). https://doi.org/10.1016/j.matpr.2020.01.255

    Article  CAS  Google Scholar 

  3. Z. Zhen, X. Liu, T. Huang, T. Fei Xi, Y. Zheng, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater. Sci. Eng. C 46, 202–206 (2015). https://doi.org/10.1016/j.msec.2014.08.038

    Article  CAS  Google Scholar 

  4. A.M. Inamuddin, A. Mohammad-Asiri (eds.), Applications of Nanocomposite Materials in Orthopedics (Woodhead Publishing, Duxford, 2019), pp. 83–109

    Book  Google Scholar 

  5. J.-M. Seitz, U. Bormann, K. Collier, E. Wulf, R. Eifler, F.-W. Bach, Application of a bioactive coating on resorbable, neodymium containing magnesium alloys, and analyses of their effects on the in vitro degradation behavior in a simulated body fluid. Adv. Eng. Mater. (2012). https://doi.org/10.1002/adem.201180078

    Article  Google Scholar 

  6. N. Li, Y. Zheng, Novel magnesium alloys developed for biomedical application: a review. J. Mater. Sci. Technol. 29(6), 489–502 (2013). https://doi.org/10.1016/j.jmst.2013.02.005

    Article  CAS  Google Scholar 

  7. S. Cai, T. Lei, N. Li, F. Feng, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater. Sci. Eng., C 32, 2570–2577 (2012). https://doi.org/10.1016/j.msec.2012.07.042

    Article  CAS  Google Scholar 

  8. C.H. Ku, D.P. Pioletti, M. Browne, P.J. Gregson, Effect of different Ti–6Al–4V surface treatments on osteoblasts behavior. Biomaterials 23(6), 1447–1454 (2002). https://doi.org/10.1016/S0142-9612(01)00266-6

    Article  CAS  Google Scholar 

  9. N. Yumiko, T. Yukari, T. Yasuhide, S. Tadashi, I. Yoshio, Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam. Appl. Toxicol. 37, 106–116 (1997). https://doi.org/10.1006/faat.1997.2322

    Article  Google Scholar 

  10. X. Gu, Y. Cheng, S. Zhong, T. Zi, In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30, 484–498 (2009). https://doi.org/10.1016/j.biomaterials.2008.10.021

    Article  CAS  Google Scholar 

  11. H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, “The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)%Sn alloys. J. Alloys Compd. 440, 122–126 (2007). https://doi.org/10.1016/j.jallcom.2006.09.024

    Article  CAS  Google Scholar 

  12. C. Zhao, F. Pan, S. Zhao, H. Pan, K. Song, A. Tang, Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification. Mater. Sci. Eng. C 54, 245–251 (2015). https://doi.org/10.1016/j.msec.2015.05.042

    Article  CAS  Google Scholar 

  13. H.-Y. Ha, J.-Y. Kang, S.G. Kim, B. Kim, S.S. Park, C.D. Yim, B.S. You, Influences of metallurgical factors on the corrosion behavior of extruded binary Mg–Sn alloys. Corros. Sci. 82, 369–379 (2014). https://doi.org/10.1016/j.corsci.2014.01.035

    Article  CAS  Google Scholar 

  14. Z. Zhen, T. Xi, Y. Zheng, L. Li, L. Li, In vitro study on Mg–Sn–Mn alloy as biodegradable metals. J. Mater. Sci. Technol. 30(7), 675–685 (2014). https://doi.org/10.1016/j.jmst.2014.04.005

    Article  CAS  Google Scholar 

  15. M. Wolff, J.G. Schaper, M.R. Suckert, T. Klassen, Magnesium powder injection molding (MIM) of orthopedic implants for biomedical applications. JOM 68(4), 1191–1197 (2016). https://doi.org/10.1007/s11837-016-1837-x

    Article  CAS  Google Scholar 

  16. P. Han, P. Cheng, S. Zhang, C. Zhao, J. Ni, Y. Zhang, W. Zhonga, P. Hou, X. Zhang, Y. Zheng, Y. Chai, In vitro and in vivo studies on the degradation of high-purity Mg (99.99 wt.%) screw with femoral intercondylar fractured rabbit model. Biomaterials 64, 57–69 (2015). https://doi.org/10.1016/j.biomaterials.2015.06.031

    Article  CAS  Google Scholar 

  17. F. Bär, L. Berger, L. Jauer, G. Kurtuldu, R. Schäublin, J.H. Schleifenbaum, J.F. Löffler, Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomater. 98, 36–49 (2019)

    Article  Google Scholar 

  18. Y. Yang, C. He, E. Dianyu, W. Yang, F. Qi, D. Xie, L. Shen, S. Peng, C. Shuai, Mg bone implant: features, developments and perspectives. Mater. Des. 185, 108259 (2020)

    Article  CAS  Google Scholar 

  19. J.-M. Seitz, A. Lucas, M. Kirschner, Magnesium-based compression screws: a novelty in the clinical use of implants. JOM 68(4), 1177–1182 (2016). https://doi.org/10.1007/s11837-015-1773-1

    Article  CAS  Google Scholar 

  20. Y. Zeng, B. Jiang, R. Li, H. Yin, S. Al-Ezzi, Grain refinement mechanism of the As-cast and As-extruded Mg–14Li alloys with Al or Sn addition. Metals 7, 172 (2017). https://doi.org/10.3390/met7050172

    Article  CAS  Google Scholar 

  21. A. Alia Diaa, Effect of alloying elements and processing techniques on the properties of some magnesium alloys, Master of Science in Mechanical Engineering, Ain Shams University, Faculty of Engineering, Cairo, Egypt (2017). http://main.eulc.edu.eg/eulc_v5/Libraries/Thesis/BrowseThesisPages.aspx?fn=PublicDrawThesis&BibID=12418137.

  22. H. Okamoto, P.R. Subramanian, L. Kacprzak (eds.), Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, 1990), p. 1702

    Google Scholar 

  23. J.T. Black, DeGarmo’s Materials and Processes in Manufacturing (12th Ed.) (Wiley, Hoboken, NJ, 2017).

    Google Scholar 

  24. B.G. Thomas, Metals processing, Chapter 14, in Structure, Processing, and Properties of Engineering Materials. ed. by J. Adams (Addison Wesley, New York, 2000)

    Google Scholar 

  25. N. El Mahallawy, R. Hammouda, M. Shoeib, A. Diaa, Effect of solution treatment on the microstructure, tensile properties, and corrosion behavior of the Mg–5Sn–2Zn–0.1Mn alloy. Mater. Res. Express 5, 016511 (2018). https://doi.org/10.1088/2053-1591/aaa349

    Article  CAS  Google Scholar 

  26. W.N. Tang, S.S. Park, B.S. You, Effect of the Zn content on the microstructure and mechanical properties of indirect-extruded Mg–5Sn–xZn alloys. Mater Design 32, 3537–3543 (2011). https://doi.org/10.1016/j.matdes.2011.02.012

    Article  CAS  Google Scholar 

  27. T. Ding, H. Yan, J.-H. Chen, W.-J. Xia, B. Su, Z.-L. Yu, Dynamic recrystallization and mechanical properties of high-strain-rate hot rolled Mg–5Zn alloys with addition of Ca and Sr. Trans. Nonferr. Met. Soc. China 29(8), 1631–2164 (2019)

    Article  CAS  Google Scholar 

  28. N. El Mahallawy, A. Diaa, M. Akdesir, H. Palkowski, Effect of Zn addition on the microstructure and mechanical properties of cast, rolled and extruded Mg-6Sn-xZn alloys. Mater. Sci. Eng. A 680, 47–53 (2017). https://doi.org/10.1016/j.msea.2016.10.075

    Article  CAS  Google Scholar 

  29. Y.V.R.K. Prasad, K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: anisotropy of hot workability. Mater. Sci. Eng. A 487, 316–327 (2008)

    Article  Google Scholar 

  30. N. El-Mahallawy, H. Palkowski, A. Klingner, A. Diaa, M. Shoeib, Effect of 10 wt% Zn addition on the microstructure, mechanical properties, and bio-corrosion behaviour of micro alloyed Mg-024Sn-004Mn alloy as biodegradable material. Mater. Today Commun. 24, 100999 (2020). https://doi.org/10.1016/j.mtcomm.2020.100999

    Article  CAS  Google Scholar 

  31. N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behavior of AZ31B magnesium alloy. Corr. Sci. 52, 589–594 (2010)

    Article  CAS  Google Scholar 

  32. Z.-Z. Shi, J.-Y. Xu, J. Yu, X.-F. Liu, Microstructure and Mechanical Properties of as–cast and as hot-rolled novel Mg-xSn-2.5Zn-2Al alloys (x=2, 4 wt%). Mater. Sci. Eng. A 712, 65–72 (2018). https://doi.org/10.1016/j.msea.2017.11.094

    Article  CAS  Google Scholar 

  33. D.H. Cho, B.W. Lee, J. Young, P. Kyung, M. Choik, M. Park, Effect of Mn addition on corrosion properties of biodegradableMg-4Zn-0.5Ca-xMn alloys. J. Alloys Compd. 695, 1166–1174 (2017). https://doi.org/10.1016/j.jallcom.2016.10.244

    Article  CAS  Google Scholar 

  34. E. Zhang, D. Yin, L. Xu, L. Yang, K. Yang, Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater. Sci. Eng. C 29, 987–993 (2009). https://doi.org/10.1016/j.msec.2008.08.024

    Article  CAS  Google Scholar 

  35. M.R. Barnett, Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng. A 464(1–2), 1–7 (2007). https://doi.org/10.1016/j.msea.2006.12.037

    Article  CAS  Google Scholar 

  36. S. Wei, T. Zhu, M. Hodgson, W. Gao, Effects of Sn addition on the microstructure and mechanical properties of as-cast, rolled and annealed Mg–4Zn alloys. Mater. Sci. Eng. A 585, 139–148 (2013). https://doi.org/10.1016/j.msea.2013.07.051

    Article  CAS  Google Scholar 

  37. J. Wang, X. Zhang, Twinning effects on strength and plasticity of metallic materials. MRS Bull. 4, 274–281 (2016). https://doi.org/10.1557/mrs.2016.67

    Article  CAS  Google Scholar 

  38. D. Chen, Y. He, H. Tao, Y. Zhang, Y. Jiang, X. Zhang, S. Zhang, Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants. Int. J. Mol. Med. 28, 343–348 (2011). https://doi.org/10.3892/ijmm.2011.707

    Article  CAS  Google Scholar 

  39. K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis, Corrosion of magnesium alloys: the role of alloying. Int. Mater. Rev. 60(3), 169–194 (2015). https://doi.org/10.1179/1743280414Y.0000000046

    Article  CAS  Google Scholar 

  40. F. Cao, G.-L. Song, A. Atrens, Corrosion and passivation of magnesium alloys. Corros. Sci. 111, 835–845 (2016). https://doi.org/10.1016/j.corsci.2016.05.041

    Article  CAS  Google Scholar 

  41. C.-Y. Zhao, F.-S. Pan, H.-C. Pan, Microstructure, mechanical and bio-corrosion properties of as-extruded Mg−Sn−Ca alloys. Trans. Nonferrous Met. Soc. China 26, 1574–1582 (2016). https://doi.org/10.1016/S1003-6326(16)64232-2

    Article  CAS  Google Scholar 

  42. M.-C. Zhao, M. Liu, G. Song, A. Atrens, Influence of the b-phase morphology on the corrosion of the Mg alloy AZ91. Corros. Sci. 50, 1939–1953 (2008). https://doi.org/10.1016/j.corsci.2008.04.010

    Article  CAS  Google Scholar 

  43. T. Zhang, Y. Shao, G. Meng, Z. Cui, F. Wang, Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior. Corros. Sci. 53, 1960–1968 (2011). https://doi.org/10.1016/j.corsci.2011.02.015

    Article  CAS  Google Scholar 

  44. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian, Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626–640 (2010). https://doi.org/10.1016/j.actbio.2009.06.028

    Article  CAS  Google Scholar 

  45. Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10), 1329 (2008). https://doi.org/10.1016/j.biomaterials.2007.12.021

    Article  CAS  Google Scholar 

  46. W.L. Cheng, S.S. Park, B.S. You, B.H. Koo, Microstructure and mechanical properties of binary Mg–Sn alloys subjected to indirect extrusion. Mater. Sci. Eng. A 527, 4650–4653 (2010)

    Article  Google Scholar 

  47. X. Zhang, G. Yuan, L. Mao, J. Niu, W. Ding, Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Mater. Lett. 66, 209–211 (2012). https://doi.org/10.1016/j.matlet.2011.08.079

    Article  CAS  Google Scholar 

  48. N. Aung, W. Zhou, Effect of grain size and twins on corrosion behavior of AZ31B magnesium alloy. Corros. Sci. 52, 589–594 (2010). https://doi.org/10.1016/j.corsci.2009.10.018

    Article  CAS  Google Scholar 

  49. Y. Liu, D. Liu, C. You et al., Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification. Front. Mater. Sci. 9, 247–253 (2015). https://doi.org/10.1007/s11706-015-0299-3

    Article  Google Scholar 

  50. K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater. 63, 1201–1204 (2010). https://doi.org/10.1016/j.scriptamat.2010.08.035

    Article  CAS  Google Scholar 

  51. W.-L. Cheng, S.-C. Ma, Y. Bai, Z.-Q. Cui, H.-X. Wang, Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: the influence of microstructural characteristics. J. Alloys Compd. 731, 945–954 (2018). https://doi.org/10.1016/j.jallcom.2017.10.073

    Article  CAS  Google Scholar 

  52. S. Hiromoto, A. Yamamoto, High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochim. Acta 54, 7085–7093 (2009). https://doi.org/10.1016/j.electacta.2009.07.033

    Article  CAS  Google Scholar 

  53. J. Bohlen, G. Cano, D. Drozdenko, P. Dobron, K.U. Kainer, S. Gall, S. Müller, D. Letzighe, Processing effects on the formability of magnesium alloy sheets. Metals 8, 147 (2018). https://doi.org/10.3390/met8020147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DAAD/BMBF project no 57128284, “Biodegradable Materials for Bone Fixation and Healing (BMBFH): Modelling, Simulation, Material-Design, and Bio-Testing” in the period of 2016-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahed El-Mahallawy.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mahallawy, N., Palkowski, H., Breitinger, HG. et al. Microstructure, mechanical properties, cytotoxicity, and bio-corrosion of micro-alloyed Mg–xSn–0.04Mn alloys for biodegradable orthopedic applications: Effect of processing techniques. Journal of Materials Research 36, 1456–1474 (2021). https://doi.org/10.1557/s43578-021-00172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00172-y

Keywords

Navigation