Skip to main content
Log in

Self-assembly behavior of layered titanium niobate and methylene blue cation and electrochemical detection of dopamine

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel nanocomposite MB/Ti5NbO14 was successfully synthesized by exfoliation/restacking method. The structure and morphology were characterized by X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and Fourier transform infrared (FTIR). It is indicated that materials were successfully synthesized, and MB was successfully intercalated between the layers of [Ti5NbO14]3− forming a layer with its molecular plane inclined to [Ti5NbO14]3− layer at about 39.88°. Meanwhile, electrochemical measurement demonstrated that MB/Ti5NbO14 nanocomposite exhibited enhanced electrochemical activities towards the oxidation of dopamine due to increased electro-transport properties. And the MB/Ti5NbO14 modified electrode has a detection limit of 2.01 µM (R/N 3.0) with the concentration range from 0.0249 to 0.4988 mM. This study indicated that this electrochemical sensor has satisfactory stability, and detects dopamine with strong anti-interference performance, repeatability, and reproducibility.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. S. Chausson, R. Retoux, J.M. Rueff, L.L.E. Pluart, P.J. Madec, P.A. Jaffres, Elaboration and characterization of novel polyamide-12-layered titanoniobates nanocomposites. J. Mater. Res. 24(11), 3358 (2009)

    Article  CAS  Google Scholar 

  2. J. Ma, Z. Zhang, M. Yang, Y. Wu, X. Feng, L. Liu, X. Zhang, Z. Tong, Intercalated methylene blue between calcium niobate nanosheets by ESD technique for electrocatalytic oxidation of ascorbic acid. Microporous Mesoporous Mater. 221, 123 (2016)

    Article  CAS  Google Scholar 

  3. J. Ma, J. Wu, J. Gu, L. Liu, D. Zhang, X. Xu, X. Yang, Z. Tong, Fabrication and spectroscopic, electrochemical, and catalytic properties of a new intercalation compound of K4Nb6O17 with cationic cobalt porphyrin. J. Mol. Catal. A 357, 95 (2012)

    Article  CAS  Google Scholar 

  4. Y. Han, N. Liu, N. Wang, Z. He, Q. Liu, Assembly of Ni–Al layered double hydroxide and oxide graphene quantum dots for supercapacitors. J. Mater. Res. 33(24), 4215 (2018)

    Article  CAS  Google Scholar 

  5. F. He, N. Yang, K. Li, X. Wang, S. Cong, L. Zhang, S. Xiong, A. Zhou, Hydrothermal synthesis of Ni-based metal organic frameworks/graphene oxide composites as supercapacitor electrode materials. J. Mater. Res. 35(11), 1439 (2020)

    Article  CAS  Google Scholar 

  6. Z. Liu, H. Su, Y. Yang, T. Wu, S. Sun, H. Yu, Advances and perspectives on transitional metal layered oxides for potassium-ion battery. Energy Storage Mater. 34, 211 (2021)

    Article  Google Scholar 

  7. K. Akatsuka, G. Takanashi, Y. Ebina, M.A. Haga, T. Sasaki, Electronic band structure of exfoliated titanium-and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J. Phys. Chem. C 116(23), 12426 (2012)

    Article  CAS  Google Scholar 

  8. L.A.L. Basilio, F. Xavier, J.C.C. Sales, J.C.S. Andrade, J. Anglada-Rivera, L. Aguilera, R.S. Silva, J. Rodriguez-Hernandez, J. Pérez de la Cruz, Y. Leyet, Fast synthesis of Na2Ti3O7 system synthesized by microwave-assisted hydrothermal method: Electrical properties. Ceram. Int. 46(15), 23834 (2020)

    Article  CAS  Google Scholar 

  9. G. Li, S. Sarwar, X. Zhang, C. Yang, X. Guo, X. Zhang, D. Wu, Surface energetics of carbon nanotubes-based nanocomposites fabricated by microwave-assisted approach. J. Mater. Res. 34(19), 3361 (2019)

    Article  CAS  Google Scholar 

  10. K. Wang, L. Hua, Z. Wang, G. Jin, C. Chen, In situ low-temperature hydrothermal synthesis of LiMn2O4 nanocomposites based on graphene oxide/carbon nanotubes hydrogel and its capacities. J. Mater. Res. 35(18), 2516 (2020)

    Article  CAS  Google Scholar 

  11. A.J. Huckaba, M. Ralaiarisoa, K.T. Cho, E. Oveisi, N. Koch, M.K. Nazeeruddin, Intercalation makes the difference with TiS2: boosting electrocatalytic water oxidation activity through Co intercalation. J. Mater. Res. 33(5), 528 (2018)

    Article  CAS  Google Scholar 

  12. M.A. Bizeto, A.L. Shiguihara, V.R.L. Constantino, Layered niobate nanosheets: building blocks for advanced materials assembly. J. Mater. Chem. 19(17), 2512 (2009)

    Article  CAS  Google Scholar 

  13. N. Miyamoto, R. Kaito, K. Kuroda, Formation of extraordinarily large nanosheets from K4Nb6O17 crystals. Chem. Commun. 2(20), 2378 (2002)

    Article  CAS  Google Scholar 

  14. Z. Tong, S. Takagi, T. Shimada, H. Tachibana, H. Inoue, Intercalation of Tris(2,2′-bipyridine)ruthenium(II) into a layered perovskite derived from Aurivillius phase Bi2SrTa2O9. Chem. Lett. 34(10), 1406 (2005)

    Article  CAS  Google Scholar 

  15. J. Xu, M. Wang, B. Pan, J. Li, B. Xia, X. Zhang, Z. Tong, Electrostatic self-assembly of exfoliated niobate nanosheets (Nb3O8) and cobalt porphyrins (CoIIITMPyP) utilized for rapid construction of intercalated nanocomposite and exploration of electrocatalysis towards oxygen reduction. Funct. Mater. Lett. 10(6), 6 (2017)

    Article  CAS  Google Scholar 

  16. J. Ma, M. Yang, Y. Chen, L. Liu, X. Zhang, M. Wang, D. Zhang, Z. Tong, Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Mater. Lett. 150, 122 (2015)

    Article  CAS  Google Scholar 

  17. J. Ma, J. Wu, J. Zheng, L. Liu, D. Zhang, X. Xu, X. Yang, Z. Tong, Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobate. Microporous Mesoporous Mater. 151, 325 (2012)

    Article  CAS  Google Scholar 

  18. Y. Kaneko, N. Iyi, J. Bujdák, R. Sasai, T. Fujita, Molecular orientation of methylene blue intercalated in layer-charge-controlled montmorillonites. J. Mater. Res. 18(11), 2639 (2003)

    Article  CAS  Google Scholar 

  19. C. Liu, G. Xu, Y. Zhu, Q. Xu, G. Yu, H. Hou, Q. Xu, X. Xi, W. Hou, In situ construction of layered K3Ti5NbO14/g-C3N4 composite for improving visible-light-driven photocatalytic performance. J. Mater. Sci. Mater. Electron. 29(18), 15859 (2018)

    Article  CAS  Google Scholar 

  20. Z. Fan, M. Wang, S. Wu, H. Wang, J. Li, L. Liu, J. Rong, Z. Tong, X. Zhang, A novel nanotube based on self-assembled iron porphyrin/tantalum tungstate composite for electrochemical detection of dopamine. J. Mater. Sci. 55(18), 7833 (2020)

    Article  CAS  Google Scholar 

  21. J. Zhang, X. Zhu, K. Yu, Surfactant-assisted nanorod synthesis of α-FeOOH and its adsorption characteristics for methylene blue. J. Mater. Res. 29(4), 509 (2014)

    Article  CAS  Google Scholar 

  22. X. Zhang, D. Li, F. Yin, J. Gong, X. Yang, Z. Tong, X. Xu, Characterization of a layered methylene blue/vanadium oxide nanocomposite and its application in a reagentless H2O2 biosensor. Appl. Biochem. Biotechnol. 172(1), 176 (2014)

    Article  CAS  Google Scholar 

  23. P. Galvin, N. Padmanathan, K.M. Razeeb, J.F. Rohan, L.C. Nagle, A. Wahl, E. Moore, W. Messina, K. Twomey, V. Ogurtsov, Nanoenabling electrochemical sensors for life sciences applications. J. Mater. Res. 32(15), 2883 (2017)

    Article  CAS  Google Scholar 

  24. X. Zhang, D. Feng, M. Chen, Z. Ding, Z. Tong, Preparation and electrochemical behavior of methylene blue intercalated into layered niobate K4Nb6O17. J. Mater. Sci. 44(12), 3020 (2009)

    Article  CAS  Google Scholar 

  25. X. Zhang, C. Liu, L. Liu, D. Zhang, T. Zhang, X. Xu, Z. Tong, Intercalation of methylene blue into layered potassium titanoniobate KTiNbO5: characterization and electrochemical investigation. J. Mater. Sci. 45(6), 1604 (2010)

    Article  CAS  Google Scholar 

  26. I. Tiwari, M. Gupta, M. Singh, Electrooxidation of dopamine at N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine/multiwalled carbon nanotubes nanocomposite-modified electrode. J. Mater. Res. 28(13), 1777 (2013)

    Article  CAS  Google Scholar 

  27. N. Thakur, S. Das Adhikary, M. Kumar, D. Mehta, A.K. Padhan, D. Mandal, T.C. Nagaiah, Ultrasensitive and highly selective electrochemical detection of dopamine using poly(ionic liquids)–cobalt polyoxometalate/CNT composite. ACS Omega 3(3), 2966 (2018)

    Article  CAS  Google Scholar 

  28. Z.N. Huang, J. Zou, J. Teng, Q. Liu, M.M. Yuan, F.P. Jiao, X.Y. Jiang, J.G. Yu, A novel electrochemical sensor based on self-assembled platinum nanochains—multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid. Ecotoxicol. Environ. Saf. 172(October 2018), 167 (2019)

    Article  CAS  Google Scholar 

  29. M. Im, S.H. Kweon, J.S. Kim, S. Nahm, J.W. Choi, S.J. Hwang, Microstructural variation and dielectric properties of KTiNbO5 and K3Ti5NbO14 ceramics. Ceram. Int. 40(4), 5861 (2014)

    Article  CAS  Google Scholar 

  30. S. Wu, L. Liu, Z. Fan, J. Ma, H. Wang, Z. Tong, Synthesis of cobalt porphyrin/Ti5NbO14 nanocomposite used as an ascorbic acid electrochemical detection material. Funct. Mater. Lett. 13(2), 3 (2020)

    Google Scholar 

  31. M. Osada, G. Takanashi, B.-W. Li, K. Akatsuka, Y. Ebina, K. Ono, H. Funakubo, K. Takada, T. Sasaki, Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-κ nanodielectrics. Adv. Funct. Mater. 21(18), 3482 (2011)

    Article  CAS  Google Scholar 

  32. Z. Klika, P. Čapková, P. Horáková, M. Valášková, P. Malý, R. Macháň, M. Pospíšil, Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue. J. Colloid Interface Sci. 311(1), 14 (2007)

    Article  CAS  Google Scholar 

  33. D. Gutiérrez-Tauste, X. Domènech, N. Casañ-Pastor, J.A. Ayllón, Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: application for fabrication of light-activated colorimetric oxygen indicators. J. Photochem. Photobiol. A 187(1), 45 (2007)

    Article  CAS  Google Scholar 

  34. A. Ghanadzadeh, A. Zeini, A. Kashef, M. Moghadam, Concentration effect on the absorption spectra of oxazine1 and methylene blue in aqueous and alcoholic solutions. J. Mol. Liq. 138(1–3), 100 (2008)

    Article  CAS  Google Scholar 

  35. Y. Dilgin, Z. Dursun, G. Nisli, L. Gorton, Photoelectrochemical investigation of methylene blue immobilised on zirconium phosphate modified carbon paste electrode in flow injection system. Anal. Chim. Acta 542, 162 (2005)

    Article  CAS  Google Scholar 

  36. X. Zhang, M. Wang, D. Li, L. Liu, J. Ma, J. Gong, X. Yang, X. Xu, Z. Tong, Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J. Solid State Electrochem. 17(12), 3177 (2013)

    Article  CAS  Google Scholar 

  37. V.S. Vasantha, S.M. Chen, Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J. Electroanal. Chem. 592(1), 77 (2006)

    Article  CAS  Google Scholar 

  38. Y. Umasankar, S.M. Chen, Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid. Sens. Actuators B 130(2), 739 (2008)

    Article  CAS  Google Scholar 

  39. T.H. Tsai, Y.C. Huang, S.M. Chen, M.A. Ali, F.M.A. Alhemaid, Fabrication of multifunctional biosensor for the determination of hydrogen peroxide, dopamine and uric acid. Int. J. Electrochem. Sci. 6(12), 6456 (2011)

    CAS  Google Scholar 

  40. Q. Liu, X. Zhu, Z. Huo, X. He, Y. Liang, M. Xu, Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 97, 557 (2012)

    Article  CAS  Google Scholar 

  41. Y. Fan, H.T. Lu, J.H. Liu, C.P. Yang, Q.S. Jing, Y.X. Zhang, X.K. Yang, K.J. Huang, Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids Surf. B 83(1), 78 (2011)

    Article  CAS  Google Scholar 

  42. S. Chandra, K. Arora, D. Bahadur, Impedimetric biosensor based on magnetic nanoparticles for electrochemical detection of dopamine. Mater. Sci. Eng. B 177(17), 1531 (2012)

    Article  CAS  Google Scholar 

  43. E. Colín-Orozco, M.T. Ramírez-Silva, S. Corona-Avendaño, M. Romero-Romo, M. Palomar-Pardavé, Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7. Electrochim. Acta 85, 307 (2012)

    Article  CAS  Google Scholar 

  44. L. Zhang, X. Jiang, Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine. J. Electroanal. Chem. 583(2), 292 (2005)

    Article  CAS  Google Scholar 

  45. W. Wang, Q. Wang, Z. Zhang, Hydrothermal synthesis of one-dimensional assemblies of Pt nanoparticles and their sensor application for simultaneous determination of dopamine and ascorbic acid. J. Nanopart. Res. 10(1), 255 (2008)

    Article  CAS  Google Scholar 

  46. T.A. Silva, H. Zanin, P.W. May, E.J. Corat, O. Fatibello-Filho, Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors. ACS Appl. Mater. Interfaces 6(23), 21086 (2014)

    Article  CAS  Google Scholar 

  47. S. Wu, T. Sun, H. Wang, Z. Fan, L. Li, B. Fan, L. Liu, J. Ma, Z. Tong, A sandwich-structured, layered CoTMPyP/Sr2Nb3O10 nanocomposite for simultaneous voltammetric determination of dopamine and ascorbic acid. J. Electroanal. Chem. 873, 114403 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the First-Class Undergraduate Majors Construction Program of Jiangsu Province, the Key Discipline Construction Program of Jiangsu Province, the 2019 Petrel Project of Lianyungang (2019-QD-014), the Lianyungang 521 Project Foundation (Grant No. LYG52105-2018045), the Jiangsu Provincial Key Laboratory of Advanced Material Function Control Technology Research Fund (jsklfctam201805), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX19_2256, KYCX20_2943). Jiangsu Ocean University Innovation and Entrepreneurship Project (X201911641104004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Tong or Xiaobo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, S., Cao, T. et al. Self-assembly behavior of layered titanium niobate and methylene blue cation and electrochemical detection of dopamine. Journal of Materials Research 36, 1437–1446 (2021). https://doi.org/10.1557/s43578-021-00166-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00166-w

Keywords

Navigation