Abstract
A novel nanocomposite MB/Ti5NbO14 was successfully synthesized by exfoliation/restacking method. The structure and morphology were characterized by X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and Fourier transform infrared (FTIR). It is indicated that materials were successfully synthesized, and MB was successfully intercalated between the layers of [Ti5NbO14]3− forming a layer with its molecular plane inclined to [Ti5NbO14]3− layer at about 39.88°. Meanwhile, electrochemical measurement demonstrated that MB/Ti5NbO14 nanocomposite exhibited enhanced electrochemical activities towards the oxidation of dopamine due to increased electro-transport properties. And the MB/Ti5NbO14 modified electrode has a detection limit of 2.01 µM (R/N 3.0) with the concentration range from 0.0249 to 0.4988 mM. This study indicated that this electrochemical sensor has satisfactory stability, and detects dopamine with strong anti-interference performance, repeatability, and reproducibility.
Graphic abstract
Similar content being viewed by others
References
S. Chausson, R. Retoux, J.M. Rueff, L.L.E. Pluart, P.J. Madec, P.A. Jaffres, Elaboration and characterization of novel polyamide-12-layered titanoniobates nanocomposites. J. Mater. Res. 24(11), 3358 (2009)
J. Ma, Z. Zhang, M. Yang, Y. Wu, X. Feng, L. Liu, X. Zhang, Z. Tong, Intercalated methylene blue between calcium niobate nanosheets by ESD technique for electrocatalytic oxidation of ascorbic acid. Microporous Mesoporous Mater. 221, 123 (2016)
J. Ma, J. Wu, J. Gu, L. Liu, D. Zhang, X. Xu, X. Yang, Z. Tong, Fabrication and spectroscopic, electrochemical, and catalytic properties of a new intercalation compound of K4Nb6O17 with cationic cobalt porphyrin. J. Mol. Catal. A 357, 95 (2012)
Y. Han, N. Liu, N. Wang, Z. He, Q. Liu, Assembly of Ni–Al layered double hydroxide and oxide graphene quantum dots for supercapacitors. J. Mater. Res. 33(24), 4215 (2018)
F. He, N. Yang, K. Li, X. Wang, S. Cong, L. Zhang, S. Xiong, A. Zhou, Hydrothermal synthesis of Ni-based metal organic frameworks/graphene oxide composites as supercapacitor electrode materials. J. Mater. Res. 35(11), 1439 (2020)
Z. Liu, H. Su, Y. Yang, T. Wu, S. Sun, H. Yu, Advances and perspectives on transitional metal layered oxides for potassium-ion battery. Energy Storage Mater. 34, 211 (2021)
K. Akatsuka, G. Takanashi, Y. Ebina, M.A. Haga, T. Sasaki, Electronic band structure of exfoliated titanium-and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J. Phys. Chem. C 116(23), 12426 (2012)
L.A.L. Basilio, F. Xavier, J.C.C. Sales, J.C.S. Andrade, J. Anglada-Rivera, L. Aguilera, R.S. Silva, J. Rodriguez-Hernandez, J. Pérez de la Cruz, Y. Leyet, Fast synthesis of Na2Ti3O7 system synthesized by microwave-assisted hydrothermal method: Electrical properties. Ceram. Int. 46(15), 23834 (2020)
G. Li, S. Sarwar, X. Zhang, C. Yang, X. Guo, X. Zhang, D. Wu, Surface energetics of carbon nanotubes-based nanocomposites fabricated by microwave-assisted approach. J. Mater. Res. 34(19), 3361 (2019)
K. Wang, L. Hua, Z. Wang, G. Jin, C. Chen, In situ low-temperature hydrothermal synthesis of LiMn2O4 nanocomposites based on graphene oxide/carbon nanotubes hydrogel and its capacities. J. Mater. Res. 35(18), 2516 (2020)
A.J. Huckaba, M. Ralaiarisoa, K.T. Cho, E. Oveisi, N. Koch, M.K. Nazeeruddin, Intercalation makes the difference with TiS2: boosting electrocatalytic water oxidation activity through Co intercalation. J. Mater. Res. 33(5), 528 (2018)
M.A. Bizeto, A.L. Shiguihara, V.R.L. Constantino, Layered niobate nanosheets: building blocks for advanced materials assembly. J. Mater. Chem. 19(17), 2512 (2009)
N. Miyamoto, R. Kaito, K. Kuroda, Formation of extraordinarily large nanosheets from K4Nb6O17 crystals. Chem. Commun. 2(20), 2378 (2002)
Z. Tong, S. Takagi, T. Shimada, H. Tachibana, H. Inoue, Intercalation of Tris(2,2′-bipyridine)ruthenium(II) into a layered perovskite derived from Aurivillius phase Bi2SrTa2O9. Chem. Lett. 34(10), 1406 (2005)
J. Xu, M. Wang, B. Pan, J. Li, B. Xia, X. Zhang, Z. Tong, Electrostatic self-assembly of exfoliated niobate nanosheets (Nb3O8−) and cobalt porphyrins (CoIIITMPyP) utilized for rapid construction of intercalated nanocomposite and exploration of electrocatalysis towards oxygen reduction. Funct. Mater. Lett. 10(6), 6 (2017)
J. Ma, M. Yang, Y. Chen, L. Liu, X. Zhang, M. Wang, D. Zhang, Z. Tong, Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Mater. Lett. 150, 122 (2015)
J. Ma, J. Wu, J. Zheng, L. Liu, D. Zhang, X. Xu, X. Yang, Z. Tong, Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobate. Microporous Mesoporous Mater. 151, 325 (2012)
Y. Kaneko, N. Iyi, J. Bujdák, R. Sasai, T. Fujita, Molecular orientation of methylene blue intercalated in layer-charge-controlled montmorillonites. J. Mater. Res. 18(11), 2639 (2003)
C. Liu, G. Xu, Y. Zhu, Q. Xu, G. Yu, H. Hou, Q. Xu, X. Xi, W. Hou, In situ construction of layered K3Ti5NbO14/g-C3N4 composite for improving visible-light-driven photocatalytic performance. J. Mater. Sci. Mater. Electron. 29(18), 15859 (2018)
Z. Fan, M. Wang, S. Wu, H. Wang, J. Li, L. Liu, J. Rong, Z. Tong, X. Zhang, A novel nanotube based on self-assembled iron porphyrin/tantalum tungstate composite for electrochemical detection of dopamine. J. Mater. Sci. 55(18), 7833 (2020)
J. Zhang, X. Zhu, K. Yu, Surfactant-assisted nanorod synthesis of α-FeOOH and its adsorption characteristics for methylene blue. J. Mater. Res. 29(4), 509 (2014)
X. Zhang, D. Li, F. Yin, J. Gong, X. Yang, Z. Tong, X. Xu, Characterization of a layered methylene blue/vanadium oxide nanocomposite and its application in a reagentless H2O2 biosensor. Appl. Biochem. Biotechnol. 172(1), 176 (2014)
P. Galvin, N. Padmanathan, K.M. Razeeb, J.F. Rohan, L.C. Nagle, A. Wahl, E. Moore, W. Messina, K. Twomey, V. Ogurtsov, Nanoenabling electrochemical sensors for life sciences applications. J. Mater. Res. 32(15), 2883 (2017)
X. Zhang, D. Feng, M. Chen, Z. Ding, Z. Tong, Preparation and electrochemical behavior of methylene blue intercalated into layered niobate K4Nb6O17. J. Mater. Sci. 44(12), 3020 (2009)
X. Zhang, C. Liu, L. Liu, D. Zhang, T. Zhang, X. Xu, Z. Tong, Intercalation of methylene blue into layered potassium titanoniobate KTiNbO5: characterization and electrochemical investigation. J. Mater. Sci. 45(6), 1604 (2010)
I. Tiwari, M. Gupta, M. Singh, Electrooxidation of dopamine at N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine/multiwalled carbon nanotubes nanocomposite-modified electrode. J. Mater. Res. 28(13), 1777 (2013)
N. Thakur, S. Das Adhikary, M. Kumar, D. Mehta, A.K. Padhan, D. Mandal, T.C. Nagaiah, Ultrasensitive and highly selective electrochemical detection of dopamine using poly(ionic liquids)–cobalt polyoxometalate/CNT composite. ACS Omega 3(3), 2966 (2018)
Z.N. Huang, J. Zou, J. Teng, Q. Liu, M.M. Yuan, F.P. Jiao, X.Y. Jiang, J.G. Yu, A novel electrochemical sensor based on self-assembled platinum nanochains—multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid. Ecotoxicol. Environ. Saf. 172(October 2018), 167 (2019)
M. Im, S.H. Kweon, J.S. Kim, S. Nahm, J.W. Choi, S.J. Hwang, Microstructural variation and dielectric properties of KTiNbO5 and K3Ti5NbO14 ceramics. Ceram. Int. 40(4), 5861 (2014)
S. Wu, L. Liu, Z. Fan, J. Ma, H. Wang, Z. Tong, Synthesis of cobalt porphyrin/Ti5NbO14 nanocomposite used as an ascorbic acid electrochemical detection material. Funct. Mater. Lett. 13(2), 3 (2020)
M. Osada, G. Takanashi, B.-W. Li, K. Akatsuka, Y. Ebina, K. Ono, H. Funakubo, K. Takada, T. Sasaki, Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-κ nanodielectrics. Adv. Funct. Mater. 21(18), 3482 (2011)
Z. Klika, P. Čapková, P. Horáková, M. Valášková, P. Malý, R. Macháň, M. Pospíšil, Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue. J. Colloid Interface Sci. 311(1), 14 (2007)
D. Gutiérrez-Tauste, X. Domènech, N. Casañ-Pastor, J.A. Ayllón, Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: application for fabrication of light-activated colorimetric oxygen indicators. J. Photochem. Photobiol. A 187(1), 45 (2007)
A. Ghanadzadeh, A. Zeini, A. Kashef, M. Moghadam, Concentration effect on the absorption spectra of oxazine1 and methylene blue in aqueous and alcoholic solutions. J. Mol. Liq. 138(1–3), 100 (2008)
Y. Dilgin, Z. Dursun, G. Nisli, L. Gorton, Photoelectrochemical investigation of methylene blue immobilised on zirconium phosphate modified carbon paste electrode in flow injection system. Anal. Chim. Acta 542, 162 (2005)
X. Zhang, M. Wang, D. Li, L. Liu, J. Ma, J. Gong, X. Yang, X. Xu, Z. Tong, Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J. Solid State Electrochem. 17(12), 3177 (2013)
V.S. Vasantha, S.M. Chen, Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J. Electroanal. Chem. 592(1), 77 (2006)
Y. Umasankar, S.M. Chen, Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid. Sens. Actuators B 130(2), 739 (2008)
T.H. Tsai, Y.C. Huang, S.M. Chen, M.A. Ali, F.M.A. Alhemaid, Fabrication of multifunctional biosensor for the determination of hydrogen peroxide, dopamine and uric acid. Int. J. Electrochem. Sci. 6(12), 6456 (2011)
Q. Liu, X. Zhu, Z. Huo, X. He, Y. Liang, M. Xu, Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 97, 557 (2012)
Y. Fan, H.T. Lu, J.H. Liu, C.P. Yang, Q.S. Jing, Y.X. Zhang, X.K. Yang, K.J. Huang, Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids Surf. B 83(1), 78 (2011)
S. Chandra, K. Arora, D. Bahadur, Impedimetric biosensor based on magnetic nanoparticles for electrochemical detection of dopamine. Mater. Sci. Eng. B 177(17), 1531 (2012)
E. Colín-Orozco, M.T. Ramírez-Silva, S. Corona-Avendaño, M. Romero-Romo, M. Palomar-Pardavé, Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7. Electrochim. Acta 85, 307 (2012)
L. Zhang, X. Jiang, Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine. J. Electroanal. Chem. 583(2), 292 (2005)
W. Wang, Q. Wang, Z. Zhang, Hydrothermal synthesis of one-dimensional assemblies of Pt nanoparticles and their sensor application for simultaneous determination of dopamine and ascorbic acid. J. Nanopart. Res. 10(1), 255 (2008)
T.A. Silva, H. Zanin, P.W. May, E.J. Corat, O. Fatibello-Filho, Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors. ACS Appl. Mater. Interfaces 6(23), 21086 (2014)
S. Wu, T. Sun, H. Wang, Z. Fan, L. Li, B. Fan, L. Liu, J. Ma, Z. Tong, A sandwich-structured, layered CoTMPyP/Sr2Nb3O10 nanocomposite for simultaneous voltammetric determination of dopamine and ascorbic acid. J. Electroanal. Chem. 873, 114403 (2020)
Acknowledgments
This work was supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the First-Class Undergraduate Majors Construction Program of Jiangsu Province, the Key Discipline Construction Program of Jiangsu Province, the 2019 Petrel Project of Lianyungang (2019-QD-014), the Lianyungang 521 Project Foundation (Grant No. LYG52105-2018045), the Jiangsu Provincial Key Laboratory of Advanced Material Function Control Technology Research Fund (jsklfctam201805), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX19_2256, KYCX20_2943). Jiangsu Ocean University Innovation and Entrepreneurship Project (X201911641104004).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Wang, H., Wu, S., Cao, T. et al. Self-assembly behavior of layered titanium niobate and methylene blue cation and electrochemical detection of dopamine. Journal of Materials Research 36, 1437–1446 (2021). https://doi.org/10.1557/s43578-021-00166-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00166-w