Skip to main content

Advertisement

Log in

Multi-stimuli-responsive magnetic hydrogel based on Tragacanth gum as a de novo nanosystem for targeted chemo/hyperthermia treatment of cancer

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel magnetic pH- and redox-responsive drug delivery system (DDS) based on natural Tragacanth gum (TG) was developed for targeted chemo/hyperthermia treatment of cancer. Firstly, acrylic acid (AA) monomer was grafted onto a maleic anhydride-functionalized TG macromonomer (MATGM) through a free radical copolymerization. Magnetic nanoparticles (MNPs) were synthesized through chemical co-precipitation, and subsequently were modified using (3-aminopropyl)triethoxysilane coupling agent. The magnetic stimuli-responsive hydrogel for targeted cancer therapy was synthesized by the incorporation of modified-MNPs and folic acid (FA), and simultaneous crosslinking of TG-g-PAA copolymer using cystamine (Cys) moiety. Doxorubicin hydrochloride (Dox) was loaded into the fabricated magnetic hydrogel (MH), and its release was studied under pH- and redox-triggered condition. The anti-cancer activity of the Dox-loaded DDS was examined against MCF7 cells through MTT assay by both chemotherapy and chemo/hyperthermia therapy approaches. It was revealed that the developed DDS has higher anti-cancer activity (~ 24%) owing to its “smart” and slow drug release behavior as well as synergic effect of hyperthermia therapy.

Graphic abstract

A novel magnetite pH- and redox-responsive drug delivery system (DDS) based on natural Tragacanth gum (TG) was design and developed for targeted chemo/hyperthermia therapy of solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020. CA Cancer J. Clin. 70(1), 7 (2020)

    Article  Google Scholar 

  2. S. Li, L. Tan, X. Meng, Nanoscale metal-organic frameworks: synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors. Adv. Funct. Mater. 30(13), 1908924 (2020)

    Article  CAS  Google Scholar 

  3. M. Lan, S. Zhao, W. Liu, C.S. Lee, W. Zhang, P. Wang, Photosensitizers for photodynamic therapy. Adv. Healthcare Mater. 8(13), 1900132 (2019)

    Article  Google Scholar 

  4. A. Montazerabadi, J. Beik, R. Irajirad, N. Attaran, S. Khaledi, H. Ghaznavi, A. Shakeri-Zadeh, Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. Artif. Cells Nanomed. Biotechnol. 47(1), 330 (2019)

    Article  CAS  Google Scholar 

  5. M. Lambertini, F. Horicks, L. Del Mastro, A.H. Partridge, I. Demeestere, Ovarian protection with gonadotropin-releasing hormone agonists during chemotherapy in cancer patients: from biological evidence to clinical application. Cancer Treat. Rev. 72, 65 (2019)

    Article  CAS  Google Scholar 

  6. M. Kumarasamy, A. Sosnik, Overcoming Efflux Transporter-Mediated Resistance in Cancer by Using Nanomedicines, in Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy (Elsevier, New York, 2020), p. 337

    Google Scholar 

  7. Y. Cao, Z. Li, L. Mao, H. Cao, J. Kong, B. Yu, C. Yu, W. Liao, The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. Eur. J. Med. Chem. 162, 423 (2019)

    Article  CAS  Google Scholar 

  8. V. Schirrmacher, From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol. 54(2), 407 (2019)

    CAS  Google Scholar 

  9. J. Xu, D. Liu, S. Xiao, X. Meng, D. Zhao, X. Jiang, X. Jiang, L. Cai, H. Jiang, Low-dose radiation prevents chemotherapy-induced cardiotoxicity. Curr. Stem Cell Rep. 5(2), 82 (2019)

    Article  Google Scholar 

  10. V. Kozlovskaya, J. Chen, C. Tedjo, X. Liang, J. Campos-Gomez, J. Oh, M. Saeed, C.T. Lungu, E. Kharlampieva, pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. J. Mater. Chem. B. 2(17), 2494 (2014)

    Article  CAS  Google Scholar 

  11. H. Li, G. Go, S.Y. Ko, J.-O. Park, S. Park, Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 25(2), 027001 (2016)

    Article  Google Scholar 

  12. M. Jaymand, Chemically modified natural polymer-based theranostic nanomedicines: are they the golden gate toward a de novo clinical approach against cancer? ACS Biomater. Sci. Eng. 6, 134–166 (2019)

    Article  Google Scholar 

  13. G. Tang, L. Chen, Z. Wang, S. Gao, Q. Qu, R. Xiong, K. Braeckmans, S.C. De Smedt, Y.S. Zhang, C. Huang, Faithful fabrication of biocompatible multicompartmental memomicrospheres for digitally color-tunable barcoding. Small 16(24), 1907586 (2020)

    Article  CAS  Google Scholar 

  14. W. Huang: Multifunctional self-healing hydrogels based on natural polymers for biomedical applications (2019).

  15. K. Soleimani, H. Derakhshankhah, M. Jaymand, H. Samadian, stimuli-responsive natural gums-based drug delivery systems for cancer treatment. Carbohydr. Polym. 254, 117422 (2021)

    Article  CAS  Google Scholar 

  16. K. Soleimani, E. Arkan, H. Derakhshankhah, B. Haghshenas, R. Jahanban-Esfahlan, M. Jaymand, A novel bioreducible and pH-responsive magnetic nanohydrogel based on β-cyclodextrin for chemo/hyperthermia therapy of cancer. Carbohydr. Polym. 252, 117229 (2021)

    Article  CAS  Google Scholar 

  17. S. Gao, G. Tang, D. Hua, R. Xiong, J. Han, S. Jiang, Q. Zhang, C. Huang, Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B. 7(5), 709 (2019)

    Article  CAS  Google Scholar 

  18. Z. Rahmani, R. Sahraei, M. Ghaemy, Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: Study of drug delivery behavior. Carbohydr. Polym. 194, 34 (2018)

    Article  CAS  Google Scholar 

  19. S. Ahmad, M. Ahmad, K. Manzoor, R. Purwar, S. Ikram, A review on latest innovations in natural gums based hydrogels: preparations & applications. Int. J. Biol. Macromol. 136, 870–890 (2019)

    Article  CAS  Google Scholar 

  20. B. Singh, L. Varshney, S. Francis, Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application. Radiat. Phys. Chem. 135, 94 (2017)

    Article  CAS  Google Scholar 

  21. S. Ghayempour, M. Montazer, Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric. Carbohydr. Polym. 170, 234 (2017)

    Article  CAS  Google Scholar 

  22. A. Apoorva, A.P. Rameshbabu, S. Dasgupta, S. Dhara, M. Padmavati, Novel pH-sensitive alginate hydrogel delivery system reinforced with gum tragacanth for intestinal targeting of nutraceuticals. Int. J. Biol. Macromol. 147, 675–687 (2020)

    Article  CAS  Google Scholar 

  23. C. Verma, P. Negi, D. Pathania, V. Sethi, B. Gupta, Preparation of pH-sensitive hydrogels by graft polymerization of itaconic acid on tragacanth gum. Polym. Int. 68(3), 344 (2019)

    CAS  Google Scholar 

  24. Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, S. Wang, Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery. ACS Appl. Mater. Interfaces 6(22), 20290 (2014)

    Article  CAS  Google Scholar 

  25. R. Li, F. Peng, J. Cai, D. Yang, P. Zhang, Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J. Pharm. Sci. 15, 311–325 (2019)

    Article  Google Scholar 

  26. A. Raza, T. Rasheed, F. Nabeel, U. Hayat, M. Bilal, H. Iqbal, Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 24(6), 1117 (2019)

    Article  CAS  Google Scholar 

  27. S. Shafiee, H.A. Ahangar, A. Saffar, Taguchi method optimization for synthesis of Fe3O4@ chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydr. Polym. 222, 114982 (2019)

    Article  CAS  Google Scholar 

  28. F. Saghatchi, M. Mohseni-Dargah, S. Akbari-Birgani, S. Saghatchi, B. Kaboudin, Cancer therapy and imaging through functionalized carbon nanotubes decorated with magnetite and gold nanoparticles as a multimodal tool. Appl. Biochem. Biotechnol. 191, 1280–1293 (2020)

    Article  CAS  Google Scholar 

  29. Z.M. Avval, L. Malekpour, F. Raeisi, A. Babapoor, S.M. Mousavi, S.A. Hashemi, M. Salari, Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev. 52(1), 157 (2020)

    Article  Google Scholar 

  30. S. Savliwala, A. Chiu-Lam, M. Unni, A. Rivera-Rodriguez, E. Fuller, K. Sen, M. Threadcraft, C. Rinaldi, Magnetic Nanoparticles, in Nanoparticles for Biomedical Applications (Elsevier, New York, 2020), p. 195

    Book  Google Scholar 

  31. A. Yadollahpour, S.A. Hosseini, S. Rashidi, F. Farhadi, Applications of magnetic nanoparticles as contrast agents in MRI: recent advances and clinical challenges. Int. J Pharm. Res. Allied Sci. 5(2), 251–257 (2016)

    CAS  Google Scholar 

  32. G.S. Zamay, T.N. Zamay, K.A. Lukyanenko, A.S. Kichkailo, Aptamers increase biocompatibility and reduce the toxicity of magnetic nanoparticles used in biomedicine. Biomedicines 8(3), 59 (2020)

    Article  CAS  Google Scholar 

  33. A. Singh, S. Jain, S.K. Sahoo, Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: an approach towards enhanced attenuation of tumor. Mater Sci. Eng. C 110, 110695 (2020)

    Article  CAS  Google Scholar 

  34. Q. Feng, Y. Liu, J. Huang, K. Chen, J. Huang, K. Xiao, Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 8(1), 1 (2018)

    Google Scholar 

  35. M. Salimi, S. Sarkar, S. Fathi, A.M. Alizadeh, R. Saber, F. Moradi, H. Delavari, Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice. Int. J. Nanomed. 13, 1483 (2018)

    Article  CAS  Google Scholar 

  36. B. Massoumi, Z. Mozaffari, M. Jaymand, A starch-based stimuli-responsive magnetite nanohydrogel as de novo drug delivery system. Int. J. Biol. Macromol. 117, 418 (2018)

    Article  CAS  Google Scholar 

  37. J. Li, J. Wang, X. Zhang, X. Xia, C. Zhang, Biodegradable reduction-responsive polymeric micelles for enhanced delivery of melphalan to retinoblastoma cells. Int. J. Biol. Macromol. 141, 997 (2019)

    Article  CAS  Google Scholar 

  38. M. Zamanlu, M. Eskandani, J. Barar, M. Jaymand, P.S. Pakchin, M. Farhoudi, Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. J. Drug Deliv. Sci. Technol. 53, 101165 (2019)

    Article  CAS  Google Scholar 

  39. M.B. Bahadori, M. Eskandani, M. De Mieri, M. Hamburger, H. Nazemiyeh, Anti-proliferative activity-guided isolation of clerodermic acid from Salvia nemorosa L..: geno/cytotoxicity and hypoxia-mediated mechanism of action. Food Chem. Toxicol. 120, 155 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran for funding assistance (Grant Number: 980958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jaymand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanban-Esfahlan, R., Soleimani, K., Derakhshankhah, H. et al. Multi-stimuli-responsive magnetic hydrogel based on Tragacanth gum as a de novo nanosystem for targeted chemo/hyperthermia treatment of cancer. Journal of Materials Research 36, 858–869 (2021). https://doi.org/10.1557/s43578-021-00137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00137-1

Keywords

Navigation