Skip to main content
Log in

High-Temperature Scanning Indentation: A new method to investigate in situ metallurgical evolution along temperature ramps

  • Invited Paper
  • Focus Issue: Advanced Nanomechanical Testing
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new technique, High-Temperature Scanning Indentation (HTSI), is proposed to investigate metallurgical evolution occurring during anisothermal heat treatments. This technique is based on the use of high-speed nanohardness measurements carried out during linear thermal ramping of the system with appropriate settings. A specific high-speed loading procedure, based on a quarter sinus loading function, a creep segment and a three-step unloading method, permits the measurement of elastic, plastic and creep properties. The indentation cycle lasts one second to minimize thermal drift issues. This approach enables quasi-continuous measurements of elastic modulus and hardness as a function of temperature in much shorter times than previous techniques. The HTSI technique is validated on fused silica and pure aluminum. The application to cold-rolled aluminum undergoing thermal cycling highlights the potential of the HTSI technique to investigate in situ thermally activated mechanisms linked with microstructural changes such as viscoplasticity, static recovery and recrystallization mechanisms in metals. Results on aluminum were confirmed using Electron Back-Scattering Diffraction measurements.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.S.K.-L. Gibson, S. Schröders, C. Zehnder, S. Korte-Kerzel, On extracting mechanical properties from nanoindentation at temperatures up to 1000 °C. Extreme Mech. Lett. 17, 43 (2017)

    Article  Google Scholar 

  2. B.D. Beake, A.J. Harris, J. Moghal, D.E.J. Armstrong, Temperature dependence of strain rate sensitivity, indentation size effects and pile-up in polycrystalline tungsten from 25 to 950 °C. Mater. Des. 156, 278 (2018)

    Article  CAS  Google Scholar 

  3. B.D. Beake, A.J. Harris, Nanomechanics to 1000 °C for high temperature mechanical properties of bulk materials and hard coatings. Vacuum 159, 17 (2019)

    Article  CAS  Google Scholar 

  4. C. Minnert, W.C. Oliver, K. Durst, New ultra-high temperature nanoindentation system for operating at up to 1100 °C. Mater. Des. 192, 108727 (2020)

    Article  CAS  Google Scholar 

  5. P. Baral, M. Laurent-Brocq, G. Guillonneau, J.-M. Bergheau, J.-L. Loubet, G. Kermouche, In situ characterization of AA1050 recrystallization kinetics using high temperature nanoindentation testing. Mater. Des. 152, 22 (2018)

    Article  CAS  Google Scholar 

  6. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2004).

    Google Scholar 

  7. J.M. Wheeler, P. Brodard, J. Michler, Elevated temperature, in situ indentation with calibrated contact temperatures. Phil. Mag. 92(25–27), 3128 (2012)

    Article  CAS  Google Scholar 

  8. J.M. Wheeler, J. Michler, Indenter materials for high temperature nanoindentation. Rev. Sci. Instrum. 84(10), 101301 (2013)

    Article  CAS  Google Scholar 

  9. J.M. Wheeler, High temperature nanoindentation: the state of the art and future challenges. Curr. Opin. Solid State Mater. Sci. 19(6), 354 (2015)

    Article  Google Scholar 

  10. N.M. Everitt, M.I. Davies, J.F. Smith, High temperature nanoindentation—the importance of isothermal contact. Phil. Mag. 91(7–9), 1221 (2011)

    Article  CAS  Google Scholar 

  11. J.M. Wheeler, J. Michler, Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84(4), 045103 (2013)

    Article  CAS  Google Scholar 

  12. N. Bozzolo, S. Jacomet, R.E. Logé, Fast in-situ annealing stage coupled with EBSD: a suitable tool to observe quick recrystallization mechanisms. Mater. Charact. 70, 28 (2012)

    Article  CAS  Google Scholar 

  13. E.M. Lauridsen, S. Schmidt, S.F. Nielsen, L. Margulies, H.F. Poulsen, D.J. Jensen, Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy. Scripta Mater. 55(1), 51 (2006)

    Article  CAS  Google Scholar 

  14. F. Christien, M.T.F. Telling, K.S. Knight, R. Le Gall, A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction. Rev. Sci. Instrum. 86(5), 053901 (2015)

    Article  CAS  Google Scholar 

  15. E.M. Lauridsen, H.F. Poulsen, S.F. Nielsen, D. Juul Jensen, Recrystallization kinetics of individual bulk grains in 90% cold-rolled aluminium. Acta Mater. 51(15), 4423 (2003)

    Article  CAS  Google Scholar 

  16. M.A.Z. Vasconcellos, R.P. Livi, M.N. Baibich, Comparative study of isothermal and isochronal crystallisation of metallic glasses. J. Phys. F: Met. Phys. 18, 1343 (1988)

    Article  CAS  Google Scholar 

  17. J.M. Pelletier, J. Perez, J.L. Soubeyroux, Physical properties of bulk amorphous glasses: influence of physical aging and onset of crystallisation. J. Non-Cryst. Solids 274(1), 301 (2000)

    Article  CAS  Google Scholar 

  18. T. Fukami, K. Okabe, D. Okai, T. Yamasaki, T. Zhang, A. Inoue, Crystal growth and time evolution in Zr–Al–Cu–Ni glassy metals in supercooled liquid. Mater. Sci. Eng. B 111(2), 189 (2004)

    Article  Google Scholar 

  19. T.G. Nieh, C. Iwamoto, Y. Ikuhara, K.W. Lee, Y.W. Chung, Comparative studies of crystallization of a bulk Zr–Al–Ti–Cu–Ni amorphous alloy. Intermetallics 12(10), 1183 (2004)

    Article  CAS  Google Scholar 

  20. Z. Zhang, J. Xie, Influence of relaxation and crystallization on micro-hardness and deformation of bulk metallic glass. Mater. Sci. Eng. A 407(1), 161 (2005)

    Article  Google Scholar 

  21. M. Apreutesei, A. Billard, P. Steyer, Crystallization and hardening of Zr-40at.% Cu thin film metallic glass: Effects of isothermal annealing. Mater. Des 86, 555 (2015)

    Article  CAS  Google Scholar 

  22. M. Idriss, F. Célarié, Y. Yokoyama, F. Tessier, T. Rouxel, Evolution of the elastic modulus of Zr–Cu–Al BMGs during annealing treatment and crystallization: role of Zr/Cu ratio. J. Non-Cryst. Solids 421, 35 (2015)

    Article  CAS  Google Scholar 

  23. Z. Wang, Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel (2012)

  24. W.D. Nix, H. Gao, Size effects in crystalline: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998)

    Article  CAS  Google Scholar 

  25. O. Franke, J.C. Trenkle, C.A. Schuh, Temperature dependence of the indentation size effect. J. Mater. Res. 25(7), 1225 (2010)

    Article  CAS  Google Scholar 

  26. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues in recrystallization: a review. Mater. Sci. Eng. A 238, 219 (1997)

    Article  Google Scholar 

  27. B.N. Lucas, W.C. Oliver, Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30(3), 601 (1999)

    Article  Google Scholar 

  28. G. Kermouche, J.L. Loubet, J.M. Bergheau, Cone indentation of time-dependent materials: the effects of the indentation strain rate. Mech. Mater. 39(1), 24 (2007)

    Article  Google Scholar 

  29. A.H.W. Ngan, H.T. Wang, B. Tang, K.Y. Sze, Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42(5–6), 1831 (2005)

    Article  Google Scholar 

  30. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992)

    Article  CAS  Google Scholar 

  31. J.L. Loubet, M. Bauer, A. Tonck, S. Bec, B. Gauthier-Manuel, in Mechanical properties and deformation behavior of materials having ultra-fine microstructures. ed. by M. Nastasi, D.M. Parkin, H. Gleiter (Springer, Netherlands, Dordrecht, 1993), pp. 429–447

    Chapter  Google Scholar 

  32. P. Baral, G. Kermouche, G. Guillonneau, G. Tiphene, J.-M. Bergheau, W.C. Oliver, J.-L. Loubet, Indentation creep vs. indentation relaxation: a matter of strain rate definition? Mater. Sci. Eng. A 781, 139246 (2020)

    Article  CAS  Google Scholar 

  33. G. Kermouche, J.L. Loubet, J.M. Bergheau, Extraction of stress–strain curves of elastic–viscoplastic solids using conical/pyramidal indentation testing with application to polymers. Mech. Mater. 40(4–5), 271 (2008)

    Article  Google Scholar 

  34. O.D. Sherby, P.E. Armstrong, Prediction of activation energies for creep and self-diffusion from hot hardness data. Metall. Mater. Trans. B 2(12), 3479 (1971)

    Article  CAS  Google Scholar 

  35. J.W. Marx, J.M. Sivertsen, Temperature dependence of the elastic moduli and internal friction of silica and glass. J. Appl. Phys. 24(1), 81 (1953)

    Article  CAS  Google Scholar 

  36. S. Spinner, Elastic moduli of glasses at elevated temperatures by a dynamic method. J. Am. Ceram. Soc. 39(3), 113 (1956)

    Article  CAS  Google Scholar 

  37. S. Spinner, G.W. Cleek, Temperature dependence of young’s modulus of vitreous germania and silica. J. Appl. Phys. 31(8), 1407 (1960)

    Article  CAS  Google Scholar 

  38. J.A. Bucaro, H.D. Dardy, High-temperature Brillouin scattering in fused quartz. J. Appl. Phys. 45(12), 5324 (1974)

    Article  CAS  Google Scholar 

  39. B.D. Beake, High-temperature nanoindentation testing of fused silica and other materials. Phil. Mag. Part A 82(10), 2179 (2002)

    Article  CAS  Google Scholar 

  40. C.A. Schuh, C.E. Packard, A.C. Lund, Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 21(3), 725 (2006)

    Article  CAS  Google Scholar 

  41. G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, 1971).

    Google Scholar 

  42. P. Ludwik, Über die Änderung der inneren Reibung der Metalle mit der Temperatur. Zeitschrift für Physikalische Chemie 91U(1), 232 (1916)

    Article  Google Scholar 

  43. J.M. Wheeler, V. Maier, K. Durst, M. Göken, J. Michler, Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng. A 585, 108 (2013)

    Article  CAS  Google Scholar 

  44. P.S. Phani, W.C. Oliver, A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum. Acta Mater. 111, 31 (2016)

    Article  CAS  Google Scholar 

  45. J. Shen, S. Yamasaki, K. Ikeda, S. Hata, H. Nakashima, Low-temperature creep at ultra-low strain rates in pure aluminum studied by a helicoid spring specimen technique. Mater. Trans. 52(7), 1381 (2011)

    Article  CAS  Google Scholar 

  46. D. Tabor, The hardness of solids. RevPhysTech 1(3), 145 (1970)

    Google Scholar 

  47. D. Tumbajoy-Spinel, X. Maeder, G. Guillonneau, S. Sao-Joao, S. Descartes, J.-M. Bergheau, C. Langlade, J. Michler, G. Kermouche, Microstructural and micromechanical investigations of surface strengthening mechanisms induced by repeated impacts on pure iron. Mater. Des. 147, 56 (2018)

    Article  CAS  Google Scholar 

  48. M. Richou, A. Durif, M. Lenci, M. Mondon, M. Minissale, L. Gallais, G. Kermouche, G. De Temmerman, Recrystallization at high temperature of two tungsten materials complying with the ITER specifications. J. Nucl. Mater. 542, 152418 (2020)

    Article  CAS  Google Scholar 

  49. A. Leitner, V. Maier-Kiener, D. Kiener, Dynamic nanoindentation testing: is there an influence on a material’s hardness? Mater. Res. Lett. 5(7), 486 (2017)

    Article  CAS  Google Scholar 

  50. J.C. Trenkle, C.E. Packard, C.A. Schuh, Hot nanoindentation in inert environments. Rev. Sci. Instrum. 81(7), 073901 (2010)

    Article  Google Scholar 

  51. F. Bachmann, R. Hielscher, H. Schaeben, Grain detection from 2d and 3d EBSD data—specification of the MTEX algorithm. Ultramicroscopy 111(12), 1720 (2011)

    Article  CAS  Google Scholar 

  52. F. Roudet, Propriétés mécaniques par indentation multi-échelles des matériaux bio-sourcés aux céramiques (2015)

  53. P. Sudharshan Phani, W.C. Oliver, A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing. Mater. Des. 164, 107563 (2019)

    Article  CAS  Google Scholar 

  54. K. Demmou, Nanoindentation (Viscoplasticité & Piézo-Mécanique de Films de Dithio-Phosphate de Zinc Triboformés, These, Ecole Centrale de Lyon, 2007).

    Google Scholar 

  55. S. Bec, A. Tonck, J.-M. Georges, E. Georges, J.-L. Loubet, Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74(5), 1061 (1996)

    Article  CAS  Google Scholar 

  56. G. Guillonneau, Nouvelles Techniques de Nano-Indentation Pour Des Conditions Expérimentales Difficiles : Très Faibles Enfoncements (Surfaces Rugueuses, Température, These, Ecully, Ecole Centrale de Lyon, 2012).

    Google Scholar 

  57. G. Guillonneau, J.M. Wheeler, J. Wehrs, L. Philippe, P. Baral, H.W. Höppel, M. Göken, J. Michler, Determination of the true projected contact area by in situ indentation testing. J. Mater. Res. 34(16), 2859 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge support from the CPER MANUTECH which financed the experimental system. This work was supported by the French National Research Agency (ANR) under contract ANR-20-CE08-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle Tiphéne.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix: The model of Loubet

Appendix: The model of Loubet

Contact depth \({{\varvec{h}}}_{{\varvec{c}}}\) versus contact area relation

The hardness of a material is defined as the ratio of the applied load \(P\) divided by the projected contact area \({A}_{\text{c}}\) (see Eq. 6).

The contact area can be geometrically determined from the contact depth. For a perfect conical indenter,

$${A}_{\text{c}}={C}_{0}{h}_{\text{c}}^{2}$$
(16)

with \({C}_{0}\) a geometrical constant. For a Berkovich indenter, \({C}_{0}=24.56\). However, the contact depth is not directly measured and has to be calculated from the tip displacement measurement. This measurement does not account for pile-up or sink-in phenomena.

Plastic depth \({{\varvec{h}}}_{{\varvec{r}}}^{\boldsymbol{^{\prime}}}\)

Loubet’s model is based on indentation measurements made on an elastic, perfectly plastic material. More specifically, he considers that the depth underneath the tip is purely plastic. Consequently, he relates the indentation depth to a plastic depth, named \({h}_{\text{r}}{^{\prime}}\), with the following expression:

$${h}_{\text{r}}{^{\prime}}=h-\frac{P}{S}.$$
(17)

The plastic depth is presented in Figs. 10 and 11. Figure 11 shows the intersection between the displacement axis and the linear fit with the S slope.

Figure 10
figure 10

Schematic representation of the contact geometry between a conical indenter and some material, defined in Loubet’s model. \(h\) is the measured indentation depth, \({h}_{\text{r}}{^{\prime}}\) is the plastic depth, \({h}_{0}\) is the tip defect and \({h}_{\text{c}}\) is the contact depth.

Figure 11
figure 11

Schematic load–displacement curve of a material. \({h}_{\text{r}}\) is the persistent depth, and \({h}_{\text{r}}{^{\prime}}\) is the plastic depth.

Figure 12
figure 12

Determination of the tip defect from the stiffness–displacement curve made on fused silica using CSM mode.

Tip defect

When carrying out real experiments, the tip is never perfect. Therefore, the real contact area is underestimated if considering a perfect tip (see Fig. 10). The hatched purple area is a perfect tip contact area without defects. Because the real tip is slightly round, the purple zone should be added to the perfect contact area to obtain the real contact area. Therefore, to solve this issue, a tip defect term \({h}_{0}\) is added in the contact depth expression when calculating the tip contact.

$${h}_{\text{r}}{^{\prime}}=h-\frac{P}{S}+{h}_{0}.$$
(18)

This term could be easily determined when plotting stiffness against depth changes for a homogeneous material such as fused silica during calibration of the system with CSM measurements (see Fig. 12). For a perfect tip, this term should be \(S\left(h\right)=bh\). When there is a tip defect, the equation becomes \(S\left(h\right)=b(h-{h}_{0})\), and \({h}_{0}\) can be determined. Let us note that the obtained value of \({h}_{0}\) depends on the load frame stiffness determined by calibration.

At low depth, the term \({h}_{0}\) allows us to be more precise in the calculation of the contact area. At large depths, the error between the ideal contact area and the real contact area becomes negligible.

Consideration of pile-up

Pile-up [46] can occur when performing indentation measurements. This effect increases the real contact area, so if not considered, the Young’s modulus and hardness will be overestimated. Therefore, Loubet defined the contact depth using

$${h}_{\text{c}}=\alpha {h}_{\text{r}}{^{\prime}}$$
(19)

with \(\alpha =1.2\) from experimental results [54, 55]. This value was experimentally determined on gold by Bec et al. [55]. It was also validated theoretically for perfectly elastic materials [56] and numerically for perfectly plastic materials [56] in the case of a conical indenter. It is worth noting that when pile-up occurs, \({h}_{\text{c}}\) could be higher than the maximum depth.

Looking to Eq. 19, the condition for sink-in is not forbidden. Loubet’s model could also been applied to materials that presents sink-in. Guillonneau et al. [57] show that Oliver and Pharr’s model and Loubet’s model give the same results on fused silica, which presents sink-in.

Independence to the load frame stiffness \({{\varvec{S}}}_{{\varvec{L}}{\varvec{F}}}\)

Equation 18 can be rewritten using \(u\), the raw displacement of the tip instead of \(h\), and the displacement corrected from the load frame stiffness when performing a nanoindentation experiment:

$${h}^{\prime}_{\text{r}}=u-\frac{P}{{S}_{\rm LF}}-\frac{P}{S}+{h}_{0}.$$
(20)

Therefore,

$$\frac{1}{K}=\frac{1}{S}+\frac{1}{{S}_{\rm LF}}$$
(21)

with \(K\) the global stiffness.

Therefore,

$${h}^{\prime}_{\text{r}}=u-\frac{P}{K}+{h}_{0}.$$
(22)

We can deduce from this expression that even if an error is made in the frame stiffness calculation, it will not change the plastic depth value because the elastic part of the displacement \(P/S\) (where \(S\) is not well calculated if \({S}_{\rm LF}\) is not well estimated) is removed from u to calculate \({h}^{\prime}_{\text{r}}\). Therefore, with the use of Loubet’s model, \({h}^{\prime}_{\text{r}}\), \({h}_{\text{c}}\) and hardness \(H\) are independent of the load frame stiffness. This point is particularly interesting when performing experiments at low penetration depths for materials with high \(E/H\) ratios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiphéne, G., Baral, P., Comby-Dassonneville, S. et al. High-Temperature Scanning Indentation: A new method to investigate in situ metallurgical evolution along temperature ramps. Journal of Materials Research 36, 2383–2396 (2021). https://doi.org/10.1557/s43578-021-00107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00107-7

Keywords

Navigation