Skip to main content
Log in

The adsorption of halogen molecules on Ti (110) surface

  • Article
  • Focus Issue: Surfaces and Interfaces in Electronics and Photonics
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Adsorption of halogen on the metal surface has received much attention due to its technological applications and major relevance for material surface processing, corrosion protection and etching. In this work, first-principle approach was used to investigate the interaction of halogen molecules on Ti (110) surface. The present results revealed that adsorption of the halogen molecule is exothermic and occurs by dissociation bonding. The HF molecule was found to be more thermodynamically stable than the HI molecule. In addition, our results revealed that the adsorption of halogen ions on Ti (110) surface is energetically favourable than the adsorption of halogen molecule. The possible adsorption sites were tested, and the top site position was found to be the most favourable followed by the hollow and bridging site for both halogens. Furthermore, the results showed the linear relationship between adsorption energy strength and charge transfer. Also, the density of states and charge density difference was studied to investigate the electronic interaction. The charge redistribution showed an electron depletion on Ti atom and charge accumulation on the halogen region.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. D.V. Tripkovic, D. Strmcnik, D. van der Vliet, V. Stamenkovic, N.M. Markovic, The role of anions in surface electrochemistry. Faraday Discuss. 140, 25 (2009)

    Article  Google Scholar 

  2. O.M. Magnussen, Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 107, 679 (2002)

    Article  CAS  Google Scholar 

  3. F.U. Renner, G.N. Ankah, A. Pareek, In-situ surface-sensitive X-ray diffractionstudy on the influence of iodide over the selective electrochemical etching of Cu3Au (111). Surf. Sci. 606, L37 (2012)

    Article  CAS  Google Scholar 

  4. O.E. Tereshchenko, D. Paget, K.V. Toropetsky, V.L. Alperovich, S.V. Eremeev, A.V. Bakulin, S.E. Kulkova, B.P. Doyle, S. Nannarone, Etching or stabilization of GaAs (001) under alkali and halogen adsorption. J. Phys. Chem. C 116, 8535 (2012)

    Article  CAS  Google Scholar 

  5. G.N. Ankah, A. Pareek, S. Cherevko, A.A. Topalov, M. Rohwerder, F.U. Renner, The influence of halides on the initial selective dissolution of Cu3Au (111). Electrochim. Acta 85, 384 (2012)

    Article  CAS  Google Scholar 

  6. G.A. Ragoisha, T.A. Auchynnikava, E.A. Streltsov, S.M. Rabchynski, Electrochemical impedance of platinum in concentrated chloride solutions under potentiodynamic anodic polarization: effect of alkali metal cations. Electrochim. Acta 122, 218 (2014)

    Article  CAS  Google Scholar 

  7. P.R. Mussini, S. Ardizzone, G. Cappelletti, M. Longhi, S. Rondinini, L.M. Doubova, Surface screening effects by specifically adsorbed halide anions in the electrocatalytic reduction of a model organic halide at mono- and polycrystalline silver in acetonitrile. J. Electroanal. Chem. 552, 213 (2013)

    Article  CAS  Google Scholar 

  8. B.S. Hoener, C.P. Byers, T.S. Heiderscheit, A.S. De Silva Indrasekara, A. Hoggard, W.S. Chang, S. Link, C.F. Landes, Spectroelectrochemistry of halide anion adsorption and dissolution of single gold nanorods. J. Phys. Chem. C 120, 20604 (2016)

    Article  CAS  Google Scholar 

  9. J.S. Lin, W.C. Chou, DFT study of selective alpha-fluoride elimination of adsorbed CF3(ads) on both Ag(111) and Cu(111) surfaces. J. Phys. Chem. C 112, 768 (2008)

    Article  CAS  Google Scholar 

  10. F. Trevisan, F. Calignano, A. Aversa, G. Marchese, M. Lombardi, S. Biamino, D. Ugues, D. Manfredi, Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. Appl. Biomater. Funct. Mater. 16, 57 (2017)

    Google Scholar 

  11. L. Zhang, L. Chem, L. Wang, Surface modification of titanium and titanium alloys: technologies, developments and future interest. Adv. Eng. Mater. 22, 1901258 (2020)

    Article  CAS  Google Scholar 

  12. M.A. Gosalvez, R.M. Nieminen, Surface morphology during anisotropic wet chemical etching of crystalline silicon. New J. Phys. 5, 1001 (2003)

    Google Scholar 

  13. S. Ghosh, L. Manna, The many facets of halide ions in the chemistry of colloidal. Chem. Rev. 118, 7804 (2018)

    Article  CAS  Google Scholar 

  14. M.S. Amrutha, F. Fasmin, S. Ramanathan, Effect of HF concentration on anodic dissolution of titanium. J. Electrochem. Soc. 164, H188 (2017)

    Article  CAS  Google Scholar 

  15. K. Tada, H. Koga, A. Hayashi, Y. Kondo, T. Kawakami, S. Yamanaka, M. Okumura, Effects of halogens on interactions between a reduced TiO2 (110) surface and noble metal atoms: A DFT study. Appl. Surf. Sci. 411, 149 (2017)

    Article  CAS  Google Scholar 

  16. T. Roman, F. Gossenberger, K. Forster-Tonigold, A. Groß, Halide adsorption on close-packed metal electrodes. J. Phys. Chem. Chem. Phys. 16(27), 13630–13634 (2014)

    Article  CAS  Google Scholar 

  17. Q. Zhu, S. Wang, First principles study of halogens adsorption on intermetallic surfaces. Appl. Surf. Sci. 364, 29 (2016)

    Article  CAS  Google Scholar 

  18. B. Shem, Z. Fang, K. Fan, J. Deng, Effect of halogen atoms on the structure and catalytic behavior of Ag (111) surface: density functional theory study. Surf. Sci. 459, 206 (2000)

    Article  Google Scholar 

  19. W.L. Zhou, T. Liu, M.C. Li, T. Zhao, Y.H. Duan, Adsorption of bromine on Mg(0001) surface from first-principles calculations. Comput. Mater. Sci. 111, 47 (2016)

    Article  CAS  Google Scholar 

  20. Y. Duan, Adsorption of fluorine and chlorine on Mg (0001) surface: A density functional theory investigation. Trans. Nonferrous Met. Soc. China 24, 1844 (2014)

    Article  CAS  Google Scholar 

  21. D. Sazou, K. Saltidou, M. Pagitsas, Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochim. Acta 76, 48 (2012)

    Article  CAS  Google Scholar 

  22. F. Gossenberger, T. Roman, K. Forster-Tonigold, A. Groß, Change of the workfunction of platinum electrodes induced by halide adsorption. Beilstein J. Nanotechnol. 5, 152 (2014)

    Article  CAS  Google Scholar 

  23. E.A. Raymond, G.L. Richmond, Probing the molecular structure and bonding of the surface of aqueous salt solution. J. Phys. Chem. B 108, 5051 (2004)

    Article  CAS  Google Scholar 

  24. E. Altman, Halogens on metals and semiconductors, in Adsorbed Layers on Surfaces. Part 1: Adsorption on Surfaces and Surface Diffusion of Adsorbates, vol. 42A1, ed. by H.P. Bonzel (Springer, Berlin, 2001), p. 420

    Chapter  Google Scholar 

  25. K. Doll, N.M. Harrison, Theoretical study of chlorine adsorption on the Ag(111)surface. Phys. Rev. B 63, 165410.1 (2001)

    Article  CAS  Google Scholar 

  26. M.E. Björketun, Z. Zeng, R. Ahmed, V. Tripkovic, K.S. Thygesen, J. Rossmeisl, Avoiding pitfalls in the modeling of electrochemical interfaces. Chem. Phys. Lett. 555, 145 (2013)

    Article  CAS  Google Scholar 

  27. U. Benedikt, W.B. Schneider, A.A. Auer, Modelling electrified interfaces in quantum chemistry: constant charge vs. constant potential. J. Phys. Chem. Chem. Phys. 15, 2712 (2013)

    Article  CAS  Google Scholar 

  28. M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, T. Ikeshoji, Structure of the water/platinum interface–a first principles simulation under bias potential. J. Phys. Chem. Chem. Phys. 10, 3609 (2008)

    Article  CAS  Google Scholar 

  29. D.M. Tshwane, R. Modiba, H.R. Chauke, G. Govender, P.E. Ngoepe, First principle study of HF molecule adsorption on TiO2 (110) surface. IOP Conf. Ser.: Mater. Sci. Eng. 655, 012043.1 (2019)

    Article  Google Scholar 

  30. B. Andryushechkin, V. Zheltov, V. Cherkez, G. Zhidomirov, A. Klimov, B. Kierren, Y. Fagot-Revurat, D. Malterre, K. Eltsov, Chlorine adsorption on Cu(111) revisited: LT-STM and DFT study. Surf. Sci. 639, 7 (2015)

    Article  CAS  Google Scholar 

  31. H. Xu, I. Harrison, Dissociative adsorption of Br 2 on Pt(111): hot atom dynamics. J. Phys. Chem. B 103, 11233 (1999)

    Article  CAS  Google Scholar 

  32. K. Christmann, Some Basic Processes at Surfaces Exemplified by Means of Hydrogen Interaction With Transition Metals. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, p. 213 (2018)

  33. L. Guo, Y. Ou, X. Shen, S. Kaya, W. Shi, R. Zhang, X. Zheng, J. Wang, Specific adsorption of halide ions on iron surface: a combined electrochemical and Monte Carlo simulation investigation. Int. J. Electrochem. Sci. 12, 7064 (2017)

    Article  CAS  Google Scholar 

  34. A.S. Shalabi, F+ tunable laser activity and interaction of atomic halogens (F, Cl and Br) at the low coordinated surface sites of SrO: Ab initio and DFT calculations. J. Mol. Model. 8, 314 (2002)

    Article  CAS  Google Scholar 

  35. D.K. Nguyen, N.T.T. Tran, Y.H. Chiu, M.F. Lin, Concentration diversified magnetic and electronic proerties of halogen adsorbed silicene. Sci. Rep. Nat. Res. 9, 13746.1 (2019)

    Google Scholar 

  36. S. Batsanov, Van der Waals radii of elements. Inorg. Mater. 37, 871 (2001)

    Article  CAS  Google Scholar 

  37. Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Metal assisted chemical etching of silicone. A Review. Adv. Mater. 23, 285 (2011)

    Article  CAS  Google Scholar 

  38. A. Migani, F. Illas, A systematic study of the structure and bonding of halogens on low-index transition metal surfaces. J. Phys. Chem. B 110, 11894 (2006)

    Article  CAS  Google Scholar 

  39. R.F.W. Bader, W.H. Henneker, Molecular charge distributions and chemical binding. J. Chem. Phys. 46, 3341 (1967)

    Article  CAS  Google Scholar 

  40. F. Caspar, Ab initio study of the work functions of the elemental metal crystals. PhD Thesis, p. 144 (1999)

  41. L. Markus, Adsorption of simple molecules on structured surfaces. PhD Thesis, p. 117 (2003)

  42. N.E. Singh-Miller, N. Marzari, Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. 80, 1 (2009)

    Article  CAS  Google Scholar 

  43. M.D. Segall, J.D.L. Philip, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys: Condens. Matter. 14, 2717 (2002)

    CAS  Google Scholar 

  44. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992)

    Article  CAS  Google Scholar 

  45. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Innovation (DSI) and Council of Scientific Industrial Research (CSIR) for their financial support. Centre for High-Performance Computing (CHPC) for computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Chauke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tshwane, D.M., Modiba, R., Govender, G. et al. The adsorption of halogen molecules on Ti (110) surface. Journal of Materials Research 36, 592–601 (2021). https://doi.org/10.1557/s43578-021-00106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00106-8

Keywords

Navigation