Skip to main content
Log in

Recent advances in processing of titanium alloys and titanium aluminides for space applications: A review

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The results of untiring efforts by the research community over the past few decades have led to the successful development and processing of a number of advanced titanium alloys with widely varying properties that can cater to niche applications. Advanced titanium alloys on one hand challenge structural steels with their higher specific strength coupled with their low temperature capability down to 4 K and pose serious threat on the other hand to superalloys for long-term applications up to 773 K. An improved understanding of the processing-microstructure-mechanical property correlation led to the realization of large scale as well as performance critical titanium alloy products in space arena. Recent advances in additive manufacturing, wherein the desired components are directly 3D printed from pre-alloyed powders/wires have given a definite advantage for cost-prohibitive titanium alloys. This review article discusses challenges in the processing, mechanical properties and microstructure evolution of various grades of titanium alloys. It also provides useful information for researchers working on titanium alloys with a glimpse in to the recent advances in Ti alloys and transformation of scientific knowledge to technological advancements in products for space applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that have been used cannot be shared at this moment, as it is a part of ongoing studies.

References

  1. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications. Adv. Eng. Mater. 5, 419 (2003)

    Article  CAS  Google Scholar 

  2. S.L. Semiatin, V. Seetharaman, I. Weiss, The thermomechanical processing of alpha/beta titanium alloys. JOM. 49, 33 (1997)

    Article  CAS  Google Scholar 

  3. V.N. Moiseyev, Titanium Alloys: Russian Aircraft and Aerospace Applications (CRC Press, Boca Raton, 2005).

    Book  Google Scholar 

  4. I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys—an overview. Mater. Sci. Eng. A 243, 46 (1998)

    Article  Google Scholar 

  5. R.B. Bhat, S. Tamirisakandala, D.B. Miracle, Beta phase superplasticity in titanium alloys by boron modification. J. Mater. Eng. Perform. 13(6), 653 (2004)

    Article  CAS  Google Scholar 

  6. C. Schuh, D.C. Dunand, Whisker alignment of Ti-6Al-4V/TiB composites during deformation by transformation superplasticity. Int. J. Superplasticity. 17, 317–340 (2001)

    Article  CAS  Google Scholar 

  7. V. Sinha, R. Srinivasan, S. Tamirisakandala, D.B. Miracle, Superplastic behavior of Ti-6Al-4V-0.1B alloy. Mater. Sci. Eng. A 539, 7 (2012)

    Article  CAS  Google Scholar 

  8. S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle, Processing, microstructure, and properties of β titanium alloys modified with boron. J. Mater. Eng. Perform. 14(6), 741 (2005)

    Article  CAS  Google Scholar 

  9. V. Anil Kumar, S.V.S.N. Murty, R.K. Gupta, M.J.N.V. Prasad, Melting and microstructure analysis of β-Ti alloy Ti-5Al-5Mo-5V-1Cr-1Fe with and without boron. Trans. Indian Inst. Met. 69, 207 (2015)

    Article  Google Scholar 

  10. V. Anil Kumar, S.V.S.N. Murty, R.K. Gupta, A.G. Rao, M.J.N.V. Prasad, Effect of boron on microstructure evolution and hot tensile deformation behavior of Ti-5Al-5V-5Mo-1Cr-1Fe alloy. J. Alloys Compd. 831, 154672 (2020)

    Article  CAS  Google Scholar 

  11. A.K. Gogia, High-temperature titanium alloys. Defence Sci. J. 55(2), 143–173 (2005)

    Article  Google Scholar 

  12. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Ti alloys for aerospace applications, in Titanium and Titanium Alloys—Fundamentals and Applications. ed. by C. Leyens, M. Peters (Wiley VCH, GmBh & co., Weinheim, 2006)

    Google Scholar 

  13. L. Badea, M. Surand, J. Ruau, B. Viguier, L. Badea, M. Surand, J. Ruau, B. Viguier, Creep behavior of Ti-6Al-4V from 450 °C to 600 °C. https://hal.archives-ouvertes.fr/hal-01186469

  14. M.J.R. Barboza, E.A.C. Perez, M.M. Medeiros, D.A.P. Reis, M.C.A. Nono, F.P. Neto, C.R.M. Silva, Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites. Mater. Sci. Eng. A 428(1–2), 319 (2006)

    Article  CAS  Google Scholar 

  15. X. Li, T. Sugui, B. Xianyu, C. Liqing, Influence of heat treatment on microstructure and creep properties of hot continuous rolled Ti-6Al-4V alloy. Mater. Sci. Eng. A 559, 401 (2013)

    Article  CAS  Google Scholar 

  16. M.D. Hayat, H. Singh, Z. He, P. Cao, Titanium metal matrix composites: an overview. Compos. Part A Appl. Sci. Manuf. 121(3), 418 (2019)

    Article  CAS  Google Scholar 

  17. R.K. Gupta, V. Anil Kumar, U.V. Gururaja, K. Subramani, U. Prakash, K.V.A. Chakravarthi, P. Ram Kumar, P. Sarkar, Solution treatment and aging of thick rings from titanium alloy Ti6Al4V. Met. Sci. Heat Treat. 57(3–4), 169–174 (2015)

    Article  CAS  Google Scholar 

  18. H. Conrad, Effect of Interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 26, 123 (1981)

    Article  CAS  Google Scholar 

  19. E. Tal-Gutelmacher, D. Eliezer, Hydrogen cracking in titanium-based alloys. J. Alloys Compd. 404–406, 621 (2005)

    Article  CAS  Google Scholar 

  20. E. Tal-Gutelmacher, D. Eliezer, Hydrogen-assisted degradation of titanium based alloys. Mater. Trans. 45(5), 1594 (2004)

    Article  CAS  Google Scholar 

  21. N. Eliaz, D. Eliezer, D.L. Olson, Hydrogen-assisted processing of materials. Mater. Sci. Eng. A 289, 41 (2000)

    Article  Google Scholar 

  22. R. Canumalla, W.P. Company, V. Singh, On silicides in high temperature titanium alloys. Defence. Sci. J. 36, 207 (1986)

    Article  Google Scholar 

  23. X.Y. Song, Y.L. Wang, W.J. Zhang, W.J. Ye, S.X. Hui, Microstructure and mechanical properties of Ti62421S high temperature titanium alloy with different heat treatments. Mater. Sci. Forum. 898, 574 (2017)

    Article  Google Scholar 

  24. E.A. Basuki, D.H. Prajitno, F. Muhammad, Alloys developed for high temperature applications. AIP Conf. Proc. 1805, 020003 (2017)

    Article  Google Scholar 

  25. H.J. Maier, High-temperature fatigue of titanium alloys. Mater. High Temp. 15(1), 3 (2016)

    Article  Google Scholar 

  26. D. Rugg, M. Dixon, J. Burrows, D. Rugg, M. Dixon, J. Burrows, High-temperature application of titanium alloys in gas turbines—material life cycle opportunities and threats—an industrial perspective. Mater. High Temp. 33(4–5), 536 (2016)

    Article  CAS  Google Scholar 

  27. Y.G. Zhou, W.D. Zeng, H.Q. Yu, A new high-temperature deformation strengthening and toughening process for titanium alloys. Mater. Sci. Eng. A 221(1–2), 58 (1996)

    Article  Google Scholar 

  28. X.A. Nie, Z. Hu, H.Q. Liu, D.Q. Yi, T.Y. Chen, B.F. Wang, Q. Gao, D.C. Wang, High temperature deformation and creep behavior of Ti-5Al-5Mo-5V-1Fe-1Cr alloy. Mater. Sci. Eng. A 613, 306 (2014)

    Article  CAS  Google Scholar 

  29. R. Tewari, N.K. Sarkar, D. Harish, B. Vishwanadh, G.K. Dey, S. Banerjee, Chapter 9—Intermetallics and alloys for high temperature applications in materials under extreme temperatures, in Recent Trends and Future Perspectives. ed. by A.K. Tyagi, S. Banerjee (Elsevier Inc, Amsterdam, 2017), p. 293

    Google Scholar 

  30. T. Tetsui, Effects of high niobium addition on the mechanical properties and high-temperature deformability of gamma TiAl alloy. Intermetallics 10(3), 239 (2002)

    Article  CAS  Google Scholar 

  31. P. Muneshwar, S.K. Singh, B. Pant, S.C. Sharma, M.C. Mittal, Advanced processing techniques for titanium base alloys and its aluminides for space applications. Trans. Ind. Inst. Met. 61(2–3), 77 (2008)

    Article  CAS  Google Scholar 

  32. L. Teng, D. Nakatomi, S. Seetharaman, Oxidation behavior of TiAl-8Nb turbine blade alloy. Metall. Mater. Trans. B 38(3), 477 (2007)

    Article  CAS  Google Scholar 

  33. X. Wu, Review of alloy and process development of TiAl alloys. Intermetallics 14(10–11), 1114 (2006)

    Article  CAS  Google Scholar 

  34. R.K. Gupta, V. Anil Kumar, G.P. Khanra, Liquid phase sintering. in Intermetallic Matrix Composites. (Woodhead Publishing, Elsevier Inc., 2018), p. 303.

  35. H. Baluragi, V. Anil Kumar, K. Narasaiah, S. Gopinath, P.P. Sinha, Manufacturing of Inconel 718 based honeycomb panels for metallic thermal protection systems. Mater. Sci. Forum. 710, 197 (2012)

    Article  CAS  Google Scholar 

  36. R. Sarkar, P. Ghosal, K. Muraleedharan, T.K. Nandy, K.K. Ray, Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy. Mater. Sci. Eng. A 528(13–14), 4819 (2011)

    Article  CAS  Google Scholar 

  37. S. Sun, L. Wang, J. Qin, Y. Chen, W. Lu, D. Zhang, Microstructural characteristics and mechanical properties of in situ synthesized (TiB+TiC)/TC18 composites. Mater. Sci. Eng. A 530, 602 (2011)

    Article  CAS  Google Scholar 

  38. C.J. Boehlert, S. Tamirisakandala, W.A. Curtin, D.B. Miracle, Assessment of in situ TiB whisker tensile strength and optimization of TiB-reinforced titanium alloy design. Scr. Mater. 61(3), 245 (2009)

    Article  CAS  Google Scholar 

  39. S.C. Tjong, Y.-W. Mai, Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68(3–4), 583 (2008)

    Article  CAS  Google Scholar 

  40. C. Zhang, Y. Lian, Y. Chen, Y. Sun, S. Zhang, Hot deformation behavior and microstructure evolution of a TiBw/near α-Ti composite with fine matrix microstructure. Metals 9(4), 481 (2019)

    Article  CAS  Google Scholar 

  41. W.O. Soboyejo, R.J. Lederich, S.M.L. Sastry, Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites. Acta Metall. Mater. 42(8), 2579 (1994)

    Article  CAS  Google Scholar 

  42. R.E. Sanders, High performance structural materials. JOM. 38(12), 12 (1986)

    Article  Google Scholar 

  43. P. Wanjara, R.A.L. Drew, S. Yue, J. Root, Hot working of TiC reinforced titanium alloy composites. Can. Metall. Q. 45(3), 311 (2006)

    Article  CAS  Google Scholar 

  44. R.M. Mahamood, Chapter 8—Laser metal deposition of titanium alloy and titanium alloy composite: Case studies. in Engineering materials and processes, ed. by Brian Derby (Spinger International Publishing, Manchester, 2018)

  45. D. Banerjee, J.C. Williams, Perspectives on titanium science and technology. Acta Mater. 61(3), 844 (2013)

    Article  CAS  Google Scholar 

  46. A. Mitchell, Melting, casting and forging problems in titanium alloys. Mater. Sci. Eng. A 243, 257 (1998)

    Article  Google Scholar 

  47. J.P. Bellot, B. Foster, S. Hans, E. Hess, D. Ablitzer, A. Mitchell, Dissolution of hard-alpha inclusions in liquid titanium alloys. Mater. Trans. B. 28, 1001 (1997)

    Article  Google Scholar 

  48. A. Mitchell, The electron beam melting and refining of titanium alloys. Mater. Sci. Eng. A 263, 217 (1999)

    Article  Google Scholar 

  49. F.H. Froes, H.B. Bomberger, The beta titanium alloys. JOM. 37(7), 28 (1985)

    Article  CAS  Google Scholar 

  50. I. Weiss, S.L. Semiatin, Thermomechanical processing of alpha titanium alloys—an overview. Mater. Sci. Eng. A 263(2), 243 (1999)

    Article  Google Scholar 

  51. S.L. Semiatin, V. Seetharaman, I. Weiss, Hot workability of titanium and titanium aluminide alloys—an overview. Mater. Sci. Eng. A 243, 1 (1998)

    Article  Google Scholar 

  52. S.L. Semiatin, An overview of the thermomechanical processing of α/β titanium alloys: current status and future research opportunities. Metall. Mater. Trans. A 51(6), 2593 (2020)

    Article  CAS  Google Scholar 

  53. S.R. Seagle, K.O. Yu, S. Giangiordano, Considerations in processing titanium. Mater. Sci. Eng. A 263, 237 (1999)

    Article  Google Scholar 

  54. Y.V.R.K. Prasad, T. Seshacharyulu, Processing maps for hot working of titanium alloys. Mater. Sci. Eng. A 243, 82 (1998)

    Article  Google Scholar 

  55. F. Montheillet, J.J. Jonas, K.W. Neale, Modeling of dynamic material behavior: a critical evaluation of the dissipator power co-content approach. Metall. Mater. Trans. A Sci. 27(1), 232 (1996)

    Article  Google Scholar 

  56. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall. Trans. A 15(10), 1883 (1984)

    Article  Google Scholar 

  57. Y.V.R.K. Prasad, K.P. Rao, S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps. ASM Int. 2nd ed. 636 (2015).

  58. R. Pederson, Microstructure and Phase Transformation of Ti-6Al-4V. Licentiate Thesis, Luleå Tekniska Universitet, 27 (2002). https://www.divaportal.org/smash/get/diva2:991369/FULLTEXT01.pdf

  59. F.J. Gil, M.P. Ginebra, J.M. Manero, J.A. Planell, Formation of α-widmanstätten structure: effects of grain size and cooling rate on the widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy. J. Alloys Compd. 329(1–2), 142 (2001)

    Article  CAS  Google Scholar 

  60. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment. Mater. Trans. A. 34(1), 147 (2003)

    Article  Google Scholar 

  61. R. Santhosh, M. Geetha, V.K. Saxena, M. Nageswararao, Studies on single and duplex aging of metastable beta titanium alloy Ti–15V–3Cr–3Al–3Sn. J. Alloys Compd. 605, 222 (2014)

    Article  CAS  Google Scholar 

  62. A. Settefrati, E. Aeby-Gautier, M. Dehmas, G. Geandier, B. Appolaire, S. Audion, J. Delfosse, Precipitation in a near β titanium alloy on ageing: Influence of heating rate and chemical composition of the β-metastable phase. Solid State Phenom. 172–174, 760 (2011)

    Article  CAS  Google Scholar 

  63. T. Furuhara, B. Poorganji, H. Abe, T. Maki, Dynamic recovery and recrystallization in titanium alloys by hot deformation. JOM. 59(1), 64 (2007)

    Article  CAS  Google Scholar 

  64. V. Anil Kumar, R.K. Gupta, V.S.K. Chakravadhanula, A.G. Rao, M.J.N.V. Prasad, S.V.S.N. Murty, Effect of test temperature on tensile behavior of Ti-5Al-5V-2Mo-1Cr-1Fe (α+β) titanium alloy with initial microstructures in hot forged and heat treated conditions. Metall. Mater. Trans. A 50(6), 2702–2719 (2019)

    Article  CAS  Google Scholar 

  65. R. Chatterjee, S.V.S.N. Murty, A. Alankar, Dynamic recrystallization in titanium alloys: a comprehensive review. Mater. Perform. Charact. 9(2), 1 (2019)

    Google Scholar 

  66. Q. Chao, H. Beladi, I. Sabirov, P.D. Hodgson, Deformation behaviour of a commercial pure titanium alloy during hot compression testing. Mater. Sci. Forum. 773–774, 281 (2014)

    Google Scholar 

  67. M.J. Tan, X.J. Zhu, S. Thiruvarudchelvan, K.M. Liew, Superplasticity studies in a beta titanium alloy. Arch. Mater. Sci. Eng. 28(12), 717 (2007)

    Google Scholar 

  68. X.J. Zhu, M.J. Tan, K.M. Liew, Superplasticity in CP-Titanium Alloys. Mater. Sci. Forum. 551–552, 373 (2007)

    Article  Google Scholar 

  69. I. Balasundar, K.R. Ravi, T. Raghu, On the high temperature deformation behaviour of titanium alloy BT3-1. Mater. Sci. Eng. A 684, 135 (2017)

    Article  CAS  Google Scholar 

  70. H. Liang, H. Guo, Y. Ning, X. Peng, C. Qin, Z. Shi, Y. Nan, Dynamic recrystallization behavior of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. Mater. Des. 63, 798 (2014)

    Article  CAS  Google Scholar 

  71. Y.C. Lin, G.D. Pang, Y.Q. Jiang, X.G. Liu, X.Y. Zhang, C. Chen, K.C. Zhou, Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures. Vacuum 169, 108878 (2019)

    Article  CAS  Google Scholar 

  72. Y.C. Lin, J. Huang, D. He, X. Zhang, Q. Wu, L. Wang, C. Chen, K. Zhou, Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression. J. Alloys Compd. 795, 471 (2019)

    Article  CAS  Google Scholar 

  73. Q. Chao, P.D. Hodgson, H. Beladi, Ultrafine grain formation in a Ti-6Al-4V alloy by thermomechanical processing of a martensitic microstructure. Metall. Mater. Trans. A 45(5), 2659 (2014)

    Article  CAS  Google Scholar 

  74. Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, D.L. Chen, Hot deformation behavior of Ti-6Al-4V alloy: effect of initial microstructure. J. Alloys Compd. 718, 170 (2017)

    Article  CAS  Google Scholar 

  75. F.H. Froes, O.N. Senkov, J.I. Qazi, Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int. Mater. Rev. 49(3–4), 227 (2004)

    Article  CAS  Google Scholar 

  76. M.A. Murzinova, Effect of hydrogen on microstructure of α-Titanium alloys deformed at 600 °C. Lett. Mater. 4(4), 214 (2014)

    Article  Google Scholar 

  77. R.Z. Valiev, G.A. Salishchev, F.Z. Utyashev, T.G. Langdon, Rev. Adv. Mater. Sci. 54(1), 14 (2018)

    Article  CAS  Google Scholar 

  78. B. Baudelet, Industrial aspects of superplasticity. Mater. Sci. Eng. A 137, 41 (1991)

    Article  Google Scholar 

  79. T. Yuri, Y. Ono, T. Ogata, Notch effects on high-cycle fatigue properties of Ti-6Al-4V ELI alloy at cryogenic temperatures. Cryogenics 46, 30 (2006)

    Article  CAS  Google Scholar 

  80. T. Yuri, Y. Ono, T. Ogata, Effects of surface roughness and notch on fatigue properties for Ti-5Al-2.5Sn ELI alloy at cryogenic temperatures. Sci. Technol. Adv. Mater. 4(4), 291 (2003)

    Article  CAS  Google Scholar 

  81. R.K. Gupta, V. Anil Kumar, X.R. Xavier, Mechanical behavior of commercially pure titanium weldments at lower temperatures. J. Mater. Eng. Perform. 27, 2192 (2018)

    Article  CAS  Google Scholar 

  82. M.L. Wasz, F.R. Brotzen, R.B. McLellan, A.J. Griffin, Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int. Mater. Rev. 41(1), 1 (1996)

    Article  CAS  Google Scholar 

  83. R. Gaur, R.K. Gupta, V. Anil Kumar, S.S. Banwait, Effect of cold rolling and heat treatment on microstructure and mechanical properties of Ti-4Al-1Mn titanium alloy. J. Mater. Eng. Perform. 27(7), 3217 (2018)

    Article  CAS  Google Scholar 

  84. P.E. Markovsky, S.L. Semiatin, Tailoring of microstructure and mechanical properties of Ti–6Al–4V with local rapid (induction) heat treatment. Mater. Sci. Eng. A 528(7–8), 3079 (2011)

    Article  CAS  Google Scholar 

  85. R.K. Gupta, V. Anil Kumar, P. Ram Kumar, Effect of variants of thermomechanical working and annealing treatment on titanium alloy Ti6Al4V closed die forgings. J. Mater. Eng. Perform. 25(6), 2551 (2016)

    Article  CAS  Google Scholar 

  86. R.K. Gupta, V. Anil Kumar, C. Mathew, G.S. Rao, Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working. Mater. Sci. Eng. A 662, 537 (2016)

    Article  CAS  Google Scholar 

  87. I. Weiss, F.H. Froes, D. Eylon, G.E. Welsh, Modification of alpha morphology in Ti- 6Al-4V by thermomechanical processing. Metall. Mater. Trans. A 17, 1935 (1986)

    Article  Google Scholar 

  88. R. Sahoo, B.B. Jha, T.K. Sahoo, Effect of primary alpha phase variation on mechanical behaviour of Ti-6Al-4V alloy. Mater. Sci. Technol. 31(12), 1486 (2015)

    Article  CAS  Google Scholar 

  89. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, S. Fox, A comparative study of the mechanical properties of high-strength β-titanium alloys. J. Alloys Compd. 457(1–2), 296 (2008)

    Article  CAS  Google Scholar 

  90. O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, Y.V. Matviychuk, Deformation behavior of beta-titanium aloys. Mater. Sci. Eng. A 354, 121 (2003)

    Article  CAS  Google Scholar 

  91. C. Sauer, G. Lütjering, Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties. J. Mater. Proc. Tech. 117, 311 (2001)

    Article  CAS  Google Scholar 

  92. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, State of the art in beta titanium alloys for airframe applications. JOM. 67(6), 1281 (2015)

    Article  CAS  Google Scholar 

  93. R.K. Gupta, V. Anil Kumar, R.R. Babu, A.G. Rao, Development of ductile γ+α2 titanium aluminide through ingot metallurgy route, thermomechanical processing and characterization. Mater. Sci. Eng. A 703(7), 124 (2017)

    Article  CAS  Google Scholar 

  94. M. Takeyama, M. Kikuchi, Eutectoid transformations accompanied by ordering. Intermetallics 6(7–8), 573 (1998)

    Article  CAS  Google Scholar 

  95. A. Denquint, Phase transformation mechanisms involved structure formation. Acta Metall. 44(1), 343 (1996)

    Google Scholar 

  96. B.K. Singh, V. Anil Kumar, R.K. Gupta, A.K. Kanjarla, Evolution of microstructure in niobium rich (α2+ γ) based titanium aluminide alloy during hot compression. Mater. Sci. Eng. A 754, 708–718 (2019)

    Article  CAS  Google Scholar 

  97. D. Hu, R.R. Botten, Phase transformations in some TiAl-based alloys. Intermetallics 10(7), 701 (2002)

    Article  CAS  Google Scholar 

  98. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, D.H. St John, The mechanism of grain refinement of titanium by silicon. Scr. Mater. 58(12), 1050 (2008)

    Article  CAS  Google Scholar 

  99. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, D.H. St, John: Grain-refinement mechanisms in titanium alloys. J. Mater. Res. 23(01), 97 (2011)

    Article  CAS  Google Scholar 

  100. M.J. Bermingham, S.D. McDonald, K. Nogita, D.H. St John, M.S. Dargusch, Effects of boron on microstructure in cast titanium alloys. Scr. Mater. 59(5), 538 (2008)

    Article  CAS  Google Scholar 

  101. V.K. Chandravanshi, R. Sarkar, P. Ghosal, S.V. Kamat, T.K. Nandy, Effect of minor additions of boron on microstructure and mechanical properties of as-cast near α titanium alloy. Metall. Mater. Trans. A 41(4), 936 (2010)

    Article  CAS  Google Scholar 

  102. B. Cherukuri, R. Srinivasan, Microstructural stability and thermomechanical processing of boron modified beta titanium alloys. PhD thesis, Wright State University (2008)

  103. B. Cherukuri, R. Srinivasan, S. Tamirisakandala, D. Miracle, The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti–15Mo–2.6Nb–3Al–0.2Si. Scr. Mater. 60(7), 496 (2009)

    Article  CAS  Google Scholar 

  104. S. Roy, S. Suwas, Enhanced superplasticity for (α+β)-hot rolled Ti-6Al-4V-0.1B alloy by means of dynamic globularization. Mater. Des. 58, 52 (2014)

    Article  CAS  Google Scholar 

  105. L. Huang, Y. Chen, F. Kong, L. Xu, S. Xiao, Direct rolling of Ti–6Al–4V–0.1B alloy sheets in the β phase region. Mater. Sci. Eng. A 577, 1 (2013)

    Article  CAS  Google Scholar 

  106. J.C. Williams, R.R. Boyer, Opportunities and issues in the application of titanium alloys for aerospace components. Metals. 10(6), 705 (2020)

    Article  Google Scholar 

  107. M. Wang, X. Lin, W. Huang, Laser additive manufacture of titanium alloys. Mater. Technol. 31(2), 90 (2016)

    Google Scholar 

  108. L.C. Zhang, Y. Liu, S. Li, Y. Hao, Additive manufacturing of titanium alloys by electron beam melting: a review. Adv. Eng. Mater. 20, 1700842 (2018)

    Article  CAS  Google Scholar 

  109. S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: a review. Mater. Des. 164, 107552 (2019)

    Article  CAS  Google Scholar 

  110. Y. Kok, X. Tan, S.B. Tor, C.K. Chua, Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting. Virtual Phys. Prototyp. 10(1), 13 (2015)

    Article  Google Scholar 

  111. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. 92, 112 (2018)

    Article  CAS  Google Scholar 

  112. W. Rae, Thermo-metallo-mechanical modelling of heat treatment induced residual stress in Ti–6Al–4V alloy. Mater. Sci. Technol. 35(7), 747 (2019)

    Article  CAS  Google Scholar 

  113. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315 (2016)

    Article  CAS  Google Scholar 

  114. M. Reith, M. Franke, M. Schloffer, C. Körner, Processing 4th generation titanium aluminides via electron beam based additive manufacturing—characterization of microstructure and mechanical properties. Materialia 14(6), 100902 (2020)

    Article  CAS  Google Scholar 

  115. W.D.P. Brassington, P.A. Colegrove, Alternative friction stir welding technology for Ti–6Al–4V propellant tanks within the space industry. Sci. Technol. Weld. Join. 22(4), 300 (2017)

    Article  CAS  Google Scholar 

  116. O. Takeda, T. Ouchi, T.H. Okabe, Recent progress in titanium extraction and recycling. Metall. Mater. Trans. B 51(4), 1315 (2020)

    Article  CAS  Google Scholar 

  117. Z. Zeng, Y. Zhang, S. Jonsson, Deformation behaviour of commercially pure titanium during simple hot compression. Mater. Des. 30(8), 3105 (2009)

    Article  CAS  Google Scholar 

  118. A.D. Kotov, A.V. Mikhailovskaya, A.O. Mosleh, T.P. Pourcelot, Superplasticity of an ultrafine-grained Ti-4%Al- %V-3 % Mo alloy. Phys. Met. Metall. 120(1), 60 (2019)

    Article  CAS  Google Scholar 

  119. G. Zhou, L. Chen, L. Liu, H. Liu, H. Peng, Y. Zhong, Low-temperature superplasticity and deformation mechanism of Ti-6Al-4V alloy. Mater. 11(7), 1212 (2018)

    Article  CAS  Google Scholar 

  120. R.Q. Bao, X. Huang, C.X. Cao, Deformation behavior and mechanisms of Ti-1023 alloy. Trans. Nonferrous Met. Soc. China. 16(2), 274 (2006)

    Article  Google Scholar 

  121. V.V. Balasubrahmanyam, Y.V.R.K. Prasad, Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging. Mater. Sci. Eng. A 336, 150 (2002)

    Article  Google Scholar 

  122. A. Salam, C. Hammond, Superplasticity in Ti-3Al-2.5V. J. Mater. Sci. Lett. 19(19), 1731 (2000)

    Article  CAS  Google Scholar 

  123. G. Wang, M.W. Fu, Maximum 'm’ superplasticity deformation for Ti–6Al–4V titanium alloy. J. Mater. Process. Technol. 192–193, 555 (2007)

    Article  CAS  Google Scholar 

  124. A. Salam, C. Hammond, Superplasticity and associated activation energy in Ti-3Al-8V-6Cr-4Mo-4Zr Alloy. J. Mater. Sci. 40(20), 5475 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank researchers working in Ti alloys at Vikram Sarabhai Space Centre, Indian Space Research Organization, Trivandrum for providing various inputs required for this review article. The authors are grateful to Deputy Director, Materials and Mechanical Entity, for the continuous support and encouragement provided by him during this work. The authors are thankful to Director, VSSC for granting permission to publish this review article. The authors would like to acknowledge National Facility for Texture and Orientation Imaging Microscopy, IIT Bombay, Mumbai and IIT Madras, Chennai for providing the necessary data and figures required for bringing out this review article in its current form.

Funding

This work did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

VAK: Conceptualization, Methodology and Original draft preparation. RKG: Reviewing and Editing, Supervision. SVSNM: Reviewing and Editing, Supervision. MJNVP: Conceptualization, Reviewing and Editing, Supervision.

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anil Kumar, V., Gupta, R.K., Prasad, M.J.N.V. et al. Recent advances in processing of titanium alloys and titanium aluminides for space applications: A review. Journal of Materials Research 36, 689–716 (2021). https://doi.org/10.1557/s43578-021-00104-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00104-w

Keywords

Navigation