Skip to main content
Log in

Effect of lithium carbonate on the sintering, microstructure, and functional properties of sol–gel‐derived Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics

  • Invited paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) has been found to be a competitive lead‐free piezoceramic candidate and was prepared by a sol–gel technique due to its small particle size and homogeneous particle size distribution, but the sintering temperature is still quite high in the previous reports. In the present paper, lithium carbonate (Li2CO3) was used as a sintering aid and dopant for the sol–gel‐derived piezoceramic powder, to facilitate the sintering process and adjust the densification, the microstructures and functional properties. With the addition of 0.5 wt% Li2CO3 sintered at 1300 °C, a high relative density 96% with piezoelectric coefficient d33 ~447 pC/N, planar coupling coefficient kp ~0.51, and Curie point TC ~98.7 °C was obtained. The way to properly define the critical changing points on temperature‐dependent dielectric curves were further discussed. By altering sintering temperature and the amount of dopant, the mutual influence between the microstructures and the functional properties was explained, to further guide shaping BCZT in more complexed connectivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. T.R. Shrout and S.J. Zhang: Lead‐free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111 (2007).

    Article  CAS  Google Scholar 

  2. W. Liu and X. Ren: Large piezoelectric effect in Pb‐free ceramics. Phys. Rev. Lett. 103, 1 (2009).

    Google Scholar 

  3. K. Castkova, K. Maca, J. Cihlar, H. Hughes, A. Matousek, P. Tofel, Y. Bai, and T.W. Button: Chemical synthesis, sintering and piezoelectric properties of Ba0.85Ca0.15 Zr0.1Ti0.9O3 lead‐free ceramics. J. Am. Ceram. Soc. 98, 2373 (2015).

    Article  CAS  Google Scholar 

  4. Y. Bai, A. Matousek, P. Tofel, V. Bijalwan, B. Nan, H. Hughes, and T.W. Button: (Ba,Ca)(Zr,Ti)O3 lead‐free piezoelectric ceramics – The critical role of processing on properties. J. Eur. Ceram. Soc. 35, 3445 (2015).

    Article  CAS  Google Scholar 

  5. C. Shu, D. Reed, and T.W. Button: A phase diagram of Ba1‐xCaxTiO3 (x=0‐0.30) piezoceramics by Raman spectroscopy. J. Am. Ceram. Soc. 101, 2589 (2018).

    Article  CAS  Google Scholar 

  6. W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang: High piezoelectric d33 coefficient in (Ba1‐xCa x)(Ti0.98Zr0.02)O3 lead‐free ceramics with relative high Curie temperature. Mater. Lett. 64, 2325 (2010).

    Article  CAS  Google Scholar 

  7. X.G. Tang and H.L.W. Chan: Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics. J. Appl. Phys. 97, 034109 (2005).

    Article  Google Scholar 

  8. H.T. Martirena and J.C. Burfoot: Grain‐size effects on properties of some ferroelectric ceramics. J. Phys. C Solid State Phys. 7, 3182 (1974).

    Article  CAS  Google Scholar 

  9. Z. Wang, J. Wang, X. Chao, L. Wei, B. Yang, D. Wang, and Z. Yang: Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics prepared by different methods. J. Mater. Sci. Mater. Electron 27, 5047 (2016).

    Article  CAS  Google Scholar 

  10. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, and K. Sreenivas: A comparative study of Ba0.95Ca0.05Zr0.25Ti0.75O3 relaxor ceramics prepared by conventional and microwave sintering techniques. Mater. Chem. Phys. 112, 858 (2008).

    Article  CAS  Google Scholar 

  11. Y. Liu, Y. Pu, and Z. Sun: Enhanced relaxor ferroelectric behavior of BCZT lead‐free ceramics prepared by hydrothermal method. Mater. Lett. 137, 128 (2014).

    Article  CAS  Google Scholar 

  12. S. Ye, J. Fuh, L. Lu, Y.L. Chang, and J.R. Yang: Structure and properties of hot‐pressed lead‐free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 3, 20693 (2013).

    Article  CAS  Google Scholar 

  13. X. Yan and B. Peng: Microstructure and electrical properties of (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 lead‐free piezoelectric ceramics prepared by spark plasma sintering. J. Mater. Sci. Mater. Electron 26, 9649 (2015).

    Article  CAS  Google Scholar 

  14. A. Frattini, A. Di Loreto, O. de Sanctis, and E. Benavidez: BCZT Ceramics prepared from activated powders. Procedia Mater. Sci. 1, 359 (2012).

    Article  CAS  Google Scholar 

  15. T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, and Y. Liu: Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J. Mater. Sci. 47, 4612 (2012).

    Article  CAS  Google Scholar 

  16. X. Liu, Z. Chen, D. Wu, B. Fang, J. Ding, X. Zhao, H. Xu, and H. Luo: Enhancing pyroelectric properties of Li‐doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead‐free ceramics by optimizing calcination temperature. Jpn. J. Appl. Phys. 54, 071501 (2015).

    Article  Google Scholar 

  17. X. Wang, P. Liang, X. Chao, and Z. Yang: Dielectric properties and impedance spectroscopy of MnCO3‐modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead‐free ceramics. J. Am. Ceram. Soc. 98, 1506 (2015).

    Article  CAS  Google Scholar 

  18. J. Wu, W. Wu, D. Xiao, J. Wang, Z. Yang, Z. Peng, Q. Chen, and J. Zhu: (Ba,Ca)(Ti,Zr)O3‐BiFeO3 lead‐free piezoelectric ceramics. Curr. Appl. Phys. Lett. 12, 534 (2012).

    Article  Google Scholar 

  19. X. Chao, J. Wang, P. Liang, T. Zhang, L. Wei, and Z. Yang: Phase transition and improved electrical performance of Ba0.85Ca0.15Zr0.1Ti0.9O3‐Ca0.28Ba0.72Nb2O6 ceramics with high Curie temperature. Mater. Des. 89, 465 (2016).

    Article  CAS  Google Scholar 

  20. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, and J. Wang: Role of room‐temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scr. Mater. 65, 771 (2011).

    Article  CAS  Google Scholar 

  21. M. Kakihana: Invited review “sol‐gel” preparation of high temperature superconducting oxides. J. Sol‐Gel Sci. Technol. 6, 7 (1996).

    Article  CAS  Google Scholar 

  22. G.T. Park, J.J. Choi, C.S. Park, J.W. Lee, and H.E. Kim: Piezoelectric and ferroelectric properties of 1‐μm‐thick lead zirconate titanate film fabricated by a double‐spin‐coating process. Appl. Phys. Lett. 85, 2322 (2004).

    Article  CAS  Google Scholar 

  23. Y. Natsume and H. Sakata: Zinc oxide films prepared by sol‐gel spin‐coating. Thin Solid Films 372, 30 (2000).

    Article  CAS  Google Scholar 

  24. E.B. Duoss, M. Twardowski, and J.A. Lewis: Sol‐gel inks for direct‐write assembly of functional oxides. Adv. Mater. 19, 3485 (2007).

    Article  CAS  Google Scholar 

  25. J.F. Destino, N.A. Dudukovic, M.A. Johnson, D.T. Nguyen, T.D. Yee, G.C. Egan, A.M. Sawvel, W.A. Steele, T.F. Baumann, E.B. Duoss, T. Suratwala, and R. Dylla‐Spears: 3D Printed optical quality silica and silica–titania glasses from sol–gel feedstocks. Adv. Mater. Technol. 3, 1 (2018).

    Google Scholar 

  26. A. Stashans and J. Chimborazo: Effect of interstitial hydrogen on structural and electronic properties of BaTiO3. Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop. 82, 1145 (2002).

    CAS  Google Scholar 

  27. T.U. Ito, A. Koda, K. Shimomura, W. Higemoto, T. Matsuzaki, Y. Kobayashi, and H. Kageyama: Excited configurations of hydrogen in the BaTiO3‐xHx perovskite lattice associated with hydrogen exchange and transport. Phys. Rev. B 95, 1 (2017).

    Article  Google Scholar 

  28. I. Coondoo, N. Panwar, H. Amorín, V.E. Ramana, M. Algueró, and A. Kholkin: Enhanced piezoelectric properties of praseodymium‐modified lead‐free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics. J. Am. Ceram. Soc. 98, 3127 (2015).

    Article  CAS  Google Scholar 

  29. C.K.I. Tan, K. Yao, and J. Ma: Effects of LiF on the structure and properties of Ba0.85Ca 0.15Zr0.1Ti0.9O3 lead‐free piezoelectric ceramics. Int. J. Appl. Ceram. Technol. 10, 701 (2013).

    Article  CAS  Google Scholar 

  30. X. Chen, X. Ruan, K. Zhao, X. He, J. Zeng, Y. Li, L. Zheng, C.H. Park, and G. Li: Low sintering temperature and high piezoelectric properties of Li‐doped (Ba,Ca)(Ti,Zr)O3 lead‐free ceramics. J. Alloys Compd. 632, 103 (2015).

    Article  CAS  Google Scholar 

  31. X. Chen, Y. Li, J. Zeng, L. Zheng, C.H. Park, and G. Li: Phase transition and large electrostrain in lead‐free Li‐doped (Ba, Ca)(Ti, Zr)O3 ceramics. J. Am. Ceram. Soc. 99, 2170 (2016).

    Article  CAS  Google Scholar 

  32. P. Patnaik: Handbook of Inorganic Chemicals (McGraw‐Hill, New York, 2003), pp. 497.

  33. B. Tang, S.R. Zhang, Y. Yuan, L.B. Yang, and X.H. Zhou: Influence of tetragonality and secondary phase on the Curie temperature for barium titanate ceramics. J. Mater. Sci. Mater. Electron 19, 1109 (2008).

    Article  CAS  Google Scholar 

  34. M. Kuwabara, H. Matsuda, N. Kurata, and E. Matsuyama: Shift of the Curie point of barium titanate ceramics with sintering temperature. J. Am. Ceram. Soc. 80, 2590 (1997).

    Article  CAS  Google Scholar 

  35. F. Baeten, B. Derks, W. Coppens, and E. van Kleef: Barium titanate characterization by differential scanning calorimetry. J. Eur. Ceram. Soc. 26, 589 (2006).

    Article  CAS  Google Scholar 

  36. S. Lee, Z.K. Liu, M.H. Kim, and C.A. Randall: Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3. J. Appl. Phys. 101, 054119‐4 (2007).

    Google Scholar 

  37. B. Jaffe, W.R. Cook, Jr., and H. Jaffe: The Piezoelectric Effect in Ceramics. Piezoelectric Ceramics (Academic Press, London and New York, 1971), pp. 7–21.

  38. S. Abhinay, R. Mazumder, A. Seal, and A. Sen: Tape casting and electrical characterization of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–0.5BCT) piezoelectric substrate. J. Eur. Ceram. Soc. 5 (2016).

  39. B. Nan, S. Olhero, R. Pinho, P.M. Vilarinho, T.W. Button, and J.M.F. Ferreira: Direct ink writing of macroporous lead‐free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. J. Am. Ceram. Soc 102, 3191 (2018).

    Article  Google Scholar 

  40. W. Heywang, K. Lubitz, and W. Wersing: Piezoelectricity: evolution and future of a technology. In Chapter 17 in Part III Characterisation Methods, M.J. Hoffmann, H. Kungl, R. Theissmann, and S. Wagner, eds. (Springer Science & Business Media, Germany, 2008); pp. 414.

  41. J.C. Wurst and J.A. Nelson: Linear intercept technique for measuring grain‐size in 2‐phase polycrystalline ceramics. J. Am. Ceram. Soc. 55, 109 (1972).

    Article  CAS  Google Scholar 

  42. D. Berlincourt, T. Kinsley, T.M. Lambert, D. Schwartz, E.A. Gerber, and I.E. Fair: IRE Standards on piezoelectric crystals: Measurements of piezoelectric ceramics, 1961. Proc. IRE 49, 1161 (1961).

    Article  Google Scholar 

  43. J. Fialka and P. Beneš: Comparison of methods for the piezoelectric coefficients measurement. Control Instrum. 62, 1047 (2013).

    Google Scholar 

Download references

Acknowledgments

This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II. Part of the work was carried out with the support of the Erasmus+ Programme of the European Union and CEITEC Nano Research Infrastructure (MEYS CR, 2016–2019). The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, B., Matoušek, A., Tofel, P. et al. Effect of lithium carbonate on the sintering, microstructure, and functional properties of sol–gel‐derived Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics. Journal of Materials Research 36, 1105–1113 (2021). https://doi.org/10.1557/s43578-020-00065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00065-6

Keywords

Navigation