Skip to main content

Advertisement

Log in

Application of Ce–Eu/TiO2 phase change material as the wall material to improve the indoor environment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Walls of buildings fitted with functional materials are beneficial for saving energy and increasing the comfort level. The Ce–Eu/TiO2 phase change material mixed with gypsum as wall plaster materials could purify indoor air, store heat energy, and also control air humidity. This paper studied the thermal-photocatalytic-humidity performance of gypsum based functional materials for residential walls and evaluated the effects of its application. The latent heat of gypsum based functional materials was 23.57 J/g, whereas the phase transition temperature of 16.81–24.97 °C, which was a comfortable temperature range for humans. After 11 h of testing the formaldehyde concentration decreased from 1.0 to 0.3144 mg m−3 and the degradation rate reached 68%. The maximum temperature difference between the experiment room and the contrast room could reach 3.9 °C. The relative humidity indoors of the experiment room was 38.40–62.30%, which was much more stable than that of the contrast room.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J. Hong, Q. Shen, F. Xue, A multi-regional structural path analysis of the energy supply chain in China’s construction industry. Energy Policy 92, 56 (2016)

    Article  Google Scholar 

  2. Z. Lyu, B. Liu, R. Wang, L. Tian, Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of (001) facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017)

    Article  CAS  Google Scholar 

  3. L. Brady, M. Abdellatif, Assessment of energy consumption in existing buildings. Energy Build. 149, 142 (2017)

    Article  Google Scholar 

  4. H. Zhang, Y. Fang, Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J. Alloy. Compd. 781, 201 (2019)

    Article  CAS  Google Scholar 

  5. X. Sun, Q. Zhang, M.A. Medina, K.O. Lee, Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB). Energy Convers. Manag. 83, 73 (2014)

    Article  Google Scholar 

  6. Z. Yang, A. Ghahramani, B. Becerik-Gerber, Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency. Energy 109, 641 (2016)

    Article  Google Scholar 

  7. G. Tang, L. Zhou, P. Zhang, Z. Han, Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. J. Therm. Anal. Calorim. 140, 625 (2020)

    Article  CAS  Google Scholar 

  8. M. Saffari, A.D. Gracia, S. Ushak, L.F. Cabeza, Passive cooling of buildings with phase change materials using whole-building energy simulation tools: a review. Renew. Sust. Energy Rev. 80, 1239 (2017)

    Article  Google Scholar 

  9. K.O. Lee, M.A. Medina, X. Sun, X. Jin, Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Sol. Energy 163, 113 (2018)

    Article  Google Scholar 

  10. Y. Li, L. Zhao, W. Hao, B.H. Li, Synthesis of novel shape-stabilized phase change materials with high latent heat and low supercooling degree for thermal energy storage. J. Mater. Res. 34, 3263 (2019)

    Article  CAS  Google Scholar 

  11. X.Y. Fan, X.L. Qiu, L.X. Lu, B.L. Zhou, Fabrication and characteristics of solar-driven phase change microcapsules with crystalline TiO2/CuS hybrid shell for solar energy conversion and storage. J. Mater. Res. 35, 2126 (2020)

    Article  CAS  Google Scholar 

  12. H.U. Rehman, Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions. Appl. Energy 185, 1585 (2017)

    Article  Google Scholar 

  13. J.F. Su, X.Y. Wang, S.B. Wang, Y.H. Zhao, Z. Huang, Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. Energy Convers. Manag. 55, 101 (2012)

    Article  CAS  Google Scholar 

  14. N.P. Sharifi, A.A.N. Shaikh, A.R. Sakulich, Application of phase change materials in gypsum boards to meet building energy conservation goals. Energy Build. 138, 455 (2017)

    Article  Google Scholar 

  15. W. Dong, L. Yang, F. Qian, Z. Lv, C. Wu, T. Xiang, D. Chen, Sandwiched meshes with superwettability for oil/water separation and heavy metal ion absorption. Asia-Pac. J. Chem. Eng. (2020). https://doi.org/10.1002/apj.2542

    Article  Google Scholar 

  16. H. Zhang, Magnetic properties and thermal stability of SrFe12O19/gamma-Fe4N composites with effective magnetic exchange coupling. Ceram. Int. 46, 9972 (2020)

    Article  CAS  Google Scholar 

  17. Z.F. Zong, D.P. Chen, W. Dong, Fabrication and characterization of decylic acid-palmitic acid based Ce–Eu doped TiO2 composites. Mater. Res. Express 6, 115521 (2019)

    Article  CAS  Google Scholar 

  18. X. Li, J. Xie, C.J. Jiang, J.G. Yu, P.Y. Zhang, Review on design and evaluation of environmental photocatalysts. Front. Env. Sci. Eng. 12, 14 (2018)

    Article  CAS  Google Scholar 

  19. F.J. Wu, X. Li, W. Liu, S.T. Zhang, Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60–70 (2017)

    Article  CAS  Google Scholar 

  20. B.S. Goncalves, L.M.C. Silva, T.C.C. de Souza, V.G. de Castro, G.G. Silva, B.C. Silva, K. Krambrock, R.B. Soares, V.F.C. Lins, M. Houmard, E.H.M. Nunes, Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites. J. Mater. Res. 34, 3918 (2019)

    Article  CAS  Google Scholar 

  21. X.S. Luo, J. Ding, J.F. Wang, J.B. Zhang, Electron transport enhancement in perovskite solar cell via the polarized BaTiO3 thin film. J. Mater. Res. 35, 2158 (2020)

    Article  CAS  Google Scholar 

  22. C. Li, H. Yu, Y. Song, M. Wang, A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew. Energy. 145, 1465 (2020)

    Article  CAS  Google Scholar 

  23. L.Q. Xiang, X.P. Zhao, Wet-chemical preparation of TiO2-based composites with different morphologies and photocatalytic properties. Nanomaterials 7, 310 (2017)

    Article  CAS  Google Scholar 

  24. N. Wada, Y. Yokomizo, C. Yogi, M. Katayama, A. Tanaka, K. Kojima, Y. Inada, K. Ozutsumi, Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018)

    Article  CAS  Google Scholar 

  25. G. Tang, X. Liu, Y. Yang, D. Chen, H. Zhang, L. Zhou, P. Zhang, H. Jiang, D. Deng, Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams. Adv. Powder Technol. 31, 1420 (2020)

    Article  CAS  Google Scholar 

  26. R.P. Barkul, F.N.A. Shaikh, S.D. Delekar, M.K. Patil, Visible light active Ce-doped TiO2 nanoparticles for photocatalytic degradation of Methylene blue. Curr. Nanosci. 13, 110 (2017)

    Article  CAS  Google Scholar 

  27. Z. Zong, D. Chen, C. Zhao, W. Dong, G. Tang, H. Zhang, X. Zhu, Fabrication and analysis of palmitic acid–decanoic acid@Ce–Eu/TiO2 composite as a building material for regulating indoor environment. Asia-Pac. J. Chem. Eng. (2020). https://doi.org/10.1002/apj.2575

    Article  Google Scholar 

  28. M. Mijakowski, J. Sowa, An attempt to improve indoor environment by installing humidity-sensitive air inlets in a naturally ventilated kindergarten building. Build. Environ. 111, 180 (2017)

    Article  Google Scholar 

  29. S. Sudo, Y. Suzuki, F. Abe, Y. Hori, T. Nishi, T. Kawaguchi, H. Saito, S. Yagihara, Investigation of the molecular dynamics of restricted water in wood by broadband dielectric measurements. J. Mater. Sci. 53, 4645 (2018)

    Article  CAS  Google Scholar 

  30. D.Y. Lei, L.P. Guo, W. Sun, J.P. Liu, C.W. Miao, Study on properties of untreated FGD gypsum-based high-strength building materials. Conserv. Build. Mater. 153, 765 (2017)

    Article  CAS  Google Scholar 

  31. J.L. Shang, Z.F. Zong, H. Zhang, Synthesis and analysis of new humidity-controlling composite materials. Int. J. Miner. Metall. Mater. 24, 594 (2017)

    Article  CAS  Google Scholar 

  32. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 28627—2012. Gypsum plaster. Beijing, 2012 (in Chinese)

  33. X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019)

    Article  CAS  Google Scholar 

  34. X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016)

    Article  CAS  Google Scholar 

  35. T. Wang, H. Nie, Y. Mi, X. Hao, F. Yang, C. Chi, W. Liang, Microstructures and mechanical properties of Ti/Al/Mg/Al/Ti laminates with various rolling reductions. J. Mater. Res. 34, 344 (2019)

    Article  CAS  Google Scholar 

  36. R.C. Shen, C.J. Jiang, Q.J. Xiang, J. Xie, X. Li, Surface and interface engineering of hierarchical photocatalysts. Appl. Surf. Sci. 471, 43 (2019)

    Article  CAS  Google Scholar 

  37. B.Q. Li, X.C. Li, X. Lu, Microstructure and compressive properties of porous Ti-Nb-Ta-Zr alloy for orthopedic applications. J. Mater. Res. 34, 4045 (2019)

    Article  CAS  Google Scholar 

  38. S. Liu, M.Y. Zhao, Z.T. He, Y. Zhong, H. Ding, D.M. Chen, Preparation of a p-n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis. Chin. J. Catal. 40, 446 (2019)

    Article  CAS  Google Scholar 

  39. C. Li, Y. Liu, Y. Zhang, L. Long, F. Shen, G. Yang, X. Zhang, Y. He, L. Wang, S. Deng, Electro-assisted ammonium persulfate activation to promote the introduction of N and S intoTiO2 film: enhancing its photoelectrocatalytic performance under solar. J. Mater. Res. 34, 3573 (2019)

    Article  CAS  Google Scholar 

  40. Y. Zhang, B. Liu, C. Du, R. Zhou, On the behaviors of porous shape memory alloy beam with gradient porosity under pure bending. J. Mater. Res. 2, 282 (2019)

    Article  CAS  Google Scholar 

  41. V.N. Satyanarayana, T. Kuchibhatla, A.S. Karakoti, A.E. Vasdekis, C.F. Windisch, S. Seal, S. Thevuthasan, D.R. Baer, An unexpected phase transformation of ceria nanoparticles in aqueous media. J. Mater. Res. 34, 465 (2019)

    Article  CAS  Google Scholar 

  42. Z. Li, X. Wang, J.F. Zhang, C.H. Liang, L.H. Lu, K. Dai, Preparation of Z-scheme WO3(H2O)(0.333)/Ag3PO4 composites with enhanced photocatalytic activity and durability. Chin. J. Catal. 40, 326 (2019)

    Article  CAS  Google Scholar 

  43. N. Xiao, S.S. Li, S. Liu, B.R. Xu, Y.D. Li, C.Q. Gao, L. Ge, G.W. Lu, Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation. Chin. J. Catal. 40, 352 (2019)

    Article  CAS  Google Scholar 

  44. X.U. Du, Y. Li, H. Yin, Q.J. Xiang, Preparation of Au/TiO2/MoS2 plasmonic composite photocatalysts with enhanced photocatalytic hydrogen generation activity. Acta. Phys-Chim. Sin. 34, 414 (2018)

    Article  CAS  Google Scholar 

  45. C. Gong, S.W. Xiang, Z.Y. Zhang, L. Sun, C.Q. Ye, C.J. Lin, Construction and visible-light-driven photocatalytic properties of LaCoO3-TiO2 nanotube arrays. Acta Phys.-Chim. Sin. 35, 616 (2019)

    Article  CAS  Google Scholar 

  46. A. Mechouet, T. Mouhib, A. Balhamri, F. Bendriaa, T. Raffak, E. Oualim, Thermal and energetic contributions of PCM plaster according to its location and type of masonry-experimental and numerical studies in a city with a temperate mediterranean climate. IEEE Access 8, 117439 (2020)

    Article  Google Scholar 

  47. E.R. Lsern, G.L. Messing, Direct foaming and seeding of highly porous, lightweight gypsum. J. Mater. Res. 31, 2244 (2016)

    Article  CAS  Google Scholar 

  48. Y. Kang, S.J. Chang, S. Kim, Hygrothermal behavior evaluation of walls improving heat and moisture performance on gypsum boards by adding porous materials. Energy Build. 165, 431 (2018)

    Article  Google Scholar 

  49. X. Zhou, Y.F. Liu, C. Song, J. Liu, A study on the formaldehyde emission parameters of porous building materials based on adsorption potential theory. Build. Environ. 106, 254 (2016)

    Article  Google Scholar 

  50. Hygienic standard for formaldehyde in indoor air. Standardization Administration of the People’s Republic of China. GBT/16127—1995, Beijing, 1995 (in Chinese)

  51. E.M. Bainy, M.L. Corazza, M.K. Lenzi, Measurement of freezing point of tilapia fish burger using differential scanning calorimetry (DSC) and cooling curve method. J. Food. Eng. 161, 82 (2015)

    Article  Google Scholar 

  52. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 20312—2006. Measurement of Hygrothermal Performance and Hygroscopic Properties of Building Materials and Products. National Standards of the People’s Republic of China. Beijing, 2006 (in Chinese)

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (51978002), State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUEK2029),Open Project Program of Key Laboratory of Metallurgical Engineering & Resources (Anhui University of Technology) (SKF20-06), Anhui Provincial Nature Science Foundation (1608085QE111), Foundation for student Research Training Program of Anhui Province (S201910360252).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Depeng Chen or Chunxiao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Z., Chen, D., Zhao, C. et al. Application of Ce–Eu/TiO2 phase change material as the wall material to improve the indoor environment. Journal of Materials Research 36, 615–627 (2021). https://doi.org/10.1557/s43578-020-00037-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00037-w

Keywords

Navigation