Skip to main content
Log in

Enhanced room-temperature ammonia vapor-sensing activity of nebulizer spray pyrolysis fabricated SnO2 thin films: an effect of Er doping

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we have coated 0, 1, 3, and 5 wt% of Erbium (Er)-doped tin oxide (SnO2) films on glass using a simple nebulizer spray pyrolysis method to make an ammonia vapor sensor with remarkable sensitivity. X-ray diffraction, Atomic force microscopy, Ultraviolet–visible spectroscopy and photoluminescence methods were employed to inspect the thin-film samples. Room-temperature ammonia vapor sensing was performed by a computer connected to the homemade gas-sensing system. The results obtained show that Er doping in SnO2 films gradually decreased the crystallite size with an increase of the surface area improving the sensing property of the vapor. A minimum optical band gap (i.e., 3.23 eV) is achieved for 5 wt% Er-doped film. The fabricated Er-doped SnO2 gas sensor showed response/recovery time highly dependent on dopant concentration. The Er concentration of 5 wt% doped SnO2 thin film showed maximum sensitivity of 91%, fast response, and recovery time of 29 and 7 s, respectively, due to high surface to volume ratio.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Farzi-kahkesh, M.B. Rahmani, A. Fattah, Growth of novel α-MoO3 hierarchical nanostructured thin films for ethanol sensing. Mater. Sci. Semicond. Process. 120, 105263 (2020)

    Article  CAS  Google Scholar 

  2. Y. Cui, M. Zhang, X. Li, B. Wang, R. Wang, Investigation on synthesis and excellent gas-sensing properties of hierarchical Au-loaded SnO2 nanoflowers. J. Mater. Res. 34, 2944 (2019)

    Article  CAS  Google Scholar 

  3. R.P. Patil, S.S. Gaikwad, A.N. Karanjekar, P.K. Khanna, G.H. Jain, V.B. Gaikwad, P.V. More, N. Bisht, Optimization of strontium-doping concentration in BaTiO3 nanostructures for room temperature NH3 and NO2 gas sensing. Mater. Today Chem. 16, 100240 (2020)

    Article  CAS  Google Scholar 

  4. J. Hu, X. Li, X. Wang, Y. Li, Q. Li, F. Wang, Hierarchical aloe-like SnO2 nanoflowers and their gas sensing properties. J. Mater. Res. 33, 1433 (2018)

    Article  CAS  Google Scholar 

  5. C. Bouzidi, H. Elhouichet, A. Moadhen, Yb3+ effect on the spectroscopic properties of Er–Yb codoped SnO2 thin films. J. Lumin. 131, 2630 (2011)

    Article  CAS  Google Scholar 

  6. T.T. Van, N. Truc Ly, L.T. Giang, C.T. My Dung, Tin dioxide nanocrystals as an effective sensitizer for erbium ions in Er-doped SnO2 systems for photonic applications. J. Nanomater. 2016, 1 (2016)

    Article  CAS  Google Scholar 

  7. B. Yuliarto, G. Gumilar, N.L.W. Septiani, SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/694823

    Article  Google Scholar 

  8. J. Ma, Y. Liu, H. Zhang, P. Ai, N. Gong, Y. Zhang, Synthesis and high sensing properties of a single Pd-doped SnO2 nanoribbon. Nanoscale Res. Lett. 9, 503 (2014)

    Article  CAS  Google Scholar 

  9. J.-H. Kim, A. Mirzaei, J.-Y. Kim, J.-H. Lee, H.W. Kim, S. Hishita, S.S. Kim, Enhancement of gas sensing by implantation of Sb-ions in SnO2 nanowires. Sens. Actuators B 304, 127307 (2020)

    Article  CAS  Google Scholar 

  10. K. Hu, F. Wang, H. Liu, Y. Li, W. Zeng, Enhanced hydrogen gas sensing properties of Pd-doped SnO2 nanofibres by Ar plasma treatment. Ceram. Int. 46, 1609 (2020)

    Article  CAS  Google Scholar 

  11. M. Zhu, T. Yang, C. Zhai, L. Du, J. Zhang, M. Zhang, Fast triethylamine gas sensing response properties of Ho-doped SnO2 nanoparticles. J. Alloys Compd. 817, 152724 (2020)

    Article  CAS  Google Scholar 

  12. S. Javanmardi, S. Nasresfahani, M.H. Sheikhi, Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater. Res. Bull. 118, 110496 (2019)

    Article  CAS  Google Scholar 

  13. A. Choudhari, B.A. Bhanvase, V.K. Saharan, P.H. Salame, Y. Hunge, Sonochemical preparation and characterization of rGO/SnO2 nanocomposite: electrochemical and gas sensing performance. Ceram. Int. 46(8, Part A), 11290 (2020)

    Article  CAS  Google Scholar 

  14. L. Xu, M. Ge, F. Zhang, H. Huang, Y. Sun, D. He, Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor. J. Mater. Res. (2020). https://doi.org/10.1557/jmr.2020.239

    Article  Google Scholar 

  15. G.N. Gerasimov, V.F. Gromov, M.I. Ikim, O.J. Ilegbusi, S.A. Ozerin, L.I. Trakhtenberg, Structure and gas-sensing properties of SnO2–In2O3 nanocomposites synthesized by impregnation method. Sens. Actuators B 320, 128406 (2020)

    Article  CAS  Google Scholar 

  16. G. Singh, Virpal, R.C. Singh, Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol. Sens. Actuators B 282, 373 (2019)

    Article  CAS  Google Scholar 

  17. Z.S. Hosseini, A.I. Zad, A. Mortezaali, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens. Actuators B 207, 865 (2015)

    Article  CAS  Google Scholar 

  18. Z. Lin, N. Li, Z. Chen, P. Fu, The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sens. Actuators B 239, 501 (2017)

    Article  CAS  Google Scholar 

  19. N.M. Shaalan, T. Yamazaki, T. Kikuta, Influence of morphology and structure geometry on NO2 gas-sensing characteristics of SnO2 nanostructures synthesized via a thermal evaporation method. Sens. Actuators B 153, 11 (2011)

    Article  CAS  Google Scholar 

  20. Y. Chen, L. Yu, D. Feng, M. Zhuo, M. Zhang, E. Zhang, Z. Xu, Q. Li, T. Wang, Superior ethanol-sensing properties based on Ni-doped SnO2 p–n heterojunction hollow spheres. Sens. Actuators B 166–167, 61 (2012)

    Article  CAS  Google Scholar 

  21. Y. Lin, W. Wei, Y. Li, F. Li, J. Zhou, D. Sun, Y. Chen, S. Ruan, Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties. J. Alloys Compd. 651, 690 (2015)

    Article  CAS  Google Scholar 

  22. L. Xiao, S. Shu, S. Liu, A facile synthesis of Pd-doped SnO2 hollow microcubes with enhanced sensing performance. Sens. Actuators B 221, 120 (2015)

    Article  CAS  Google Scholar 

  23. Y. Zhao, Y. Li, W. Wan, X. Ren, H. Zhao, Surface defect and gas-sensing performance of the well-aligned Sm-doped SnO2 nanoarrays. Mater. Lett. 218, 22 (2018)

    Article  CAS  Google Scholar 

  24. G. Qin, F. Gao, Q. Jiang, Y. Li, Y. Liu, L. Luo, K. Zhao, H. Zhao, Well-aligned Nd-doped SnO2 nanorod layered arrays: preparation, characterization and enhanced alcohol-gas sensing performance. Phys. Chem. Chem. Phys. 18, 5537 (2016)

    Article  CAS  Google Scholar 

  25. L. Chikhale, J. Patil, A. Rajgure, F. Shaikh, I. Mulla, S. Suryavanshi, Structural, morphological and gas sensing properties of undoped and Lanthanum doped nanocrystalline SnO2. Ceram. Int. 40, 2179 (2014)

    Article  CAS  Google Scholar 

  26. C. Sankar, V. Ponnuswamy, M. Manickam, R. Mariappan, R. Suresh, Structural, morphological, optical and gas sensing properties of pure and Ru doped SnO2 thin films by nebulizer spray pyrolysis technique. Appl. Surf. Sci. 349, 931 (2015)

    Article  CAS  Google Scholar 

  27. H. Wu, Z. Ma, Z. Lin, H. Song, S. Yan, Y. Shi, High-sensitive ammonia sensors based on tin monoxide nanoshells. Nanomaterials 9(3), 388 (2019)

    Article  CAS  Google Scholar 

  28. W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties. J. Alloys Compd. 605, 80 (2014)

    Article  CAS  Google Scholar 

  29. S. Palanichamy, J. Raj Mohamed, K. Deva Arun Kumar, P.S. Satheesh Kumar, S. Pandiaraj, L. Amalraj, Physical properties of rare earth metal (Gd3+) doped SnO2 thin films prepared by simplified spray pyrolysis technique using nebulizer. Optik 194, 162887 (2019)

    Google Scholar 

  30. B. Thomas, S. Deepa, K. Prasanna Kumari, Influence of surface defects and preferential orientation in nanostructured Ce-doped SnO2 thin films by nebulizer spray deposition for lowering the LPG sensing temperature to 150 °C. Ionics 25, 809 (2019)

    Article  CAS  Google Scholar 

  31. H.H. Ahmed, Variation of the structural, optical and electrical properties of CBD CdO with processing temperature. Mater. Sci. Semicond. Process. 66, 215 (2017)

    Article  CAS  Google Scholar 

  32. M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017)

    Article  CAS  Google Scholar 

  33. M. Shakir, S. Kushwaha, K. Maurya, G. Bhagavannarayana, M. Wahab, Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047 (2009)

    Article  CAS  Google Scholar 

  34. M. Shkir, S. AlFaify, Effect of Gd3+ doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications. J. Mater. Res. 34(16), 2765 (2019)

    Article  CAS  Google Scholar 

  35. K.R. Devi, G. Selvan, M. Karunakaran, K. Kasirajan, NH3 sensor based SILAR coated undoped and aluminium doped ZnO thin films. Comp. Eng. J. 11, 249 (2020)

    Google Scholar 

  36. T.G. Conti, A.J. Chiquito, E.R. Leite, Electrical properties of SnO2: Sb ultrathin films prepared by colloidal deposition process. J. Mater. Res. 31, 148 (2016)

    Article  CAS  Google Scholar 

  37. C.S. Prajapati, P.P. Sahay, Effect of precursors on structure, optical and electrical properties of chemically deposited nanocrystalline ZnO thin films. Appl. Surf. Sci. 258, 2823 (2012)

    Article  CAS  Google Scholar 

  38. M. Ali Yıldırım, A. Ateş, Influence of films thickness and structure on the photo-response of ZnO films. Opt. Commun. 283, 1370 (2010)

    Article  CAS  Google Scholar 

  39. M. Shkir, M. Anis, S.S. Shaikh, M.S. Hamdy, S. AlFaify, Impact of Se doping on optical and third-order nonlinear optical properties of spray pyrolysis fabricated CdS thin films for optoelectronics. Appl. Phys. B 126, 121 (2020)

    Article  CAS  Google Scholar 

  40. M. Shkir, I.S. Yahia, M. Kilany, M.M. Abutalib, S. AlFaify, R. Darwish, Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50 (2019)

    Article  CAS  Google Scholar 

  41. M. Shkir, M. Kilany, I.S. Yahia, Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: a systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923 (2017)

    Article  CAS  Google Scholar 

  42. M. Shkir, K.V. Chandekar, T. Alshahrani, A. Kumar, S. AlFaify, A novel terbium doping effect on physical properties of lead sulfide nanostructures: a facile synthesis and characterization. J. Mater. Res. (2020). https://doi.org/10.1557/jmr.2020.216

    Article  Google Scholar 

  43. V. Mote, Y. Purushotham, B. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theoret. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  44. R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, C. Sankar, Deposition and characterization of pure and Cd doped SnO2 thin films by the nebulizer spray pyrolysis (NSP) technique. Mater. Sci. Semicond. Process. 16, 825 (2013)

    Article  CAS  Google Scholar 

  45. S. Maheswari, M. Karunakaran, K. Kasirajan, Nebuliser spray pyrolysis coated undoped and Tb-doped SnO2 thin films: ammonia vapour sensor application. Sustain. Humanosphere 16, 1136 (2020)

    Google Scholar 

  46. S.K. Sinha, R. Bhattacharya, S.K. Ray, I. Manna, Influence of deposition temperature on structure and morphology of nanostructured SnO2 films synthesized by pulsed laser deposition. Mater. Lett. 65, 146 (2011)

    Article  CAS  Google Scholar 

  47. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf. Sci. 258, 3255 (2012)

    Article  CAS  Google Scholar 

  48. K. Ravichandran, K. Thirumurugan, Type inversion and certain physical properties of spray pyrolysed SnO2: Al films for novel transparent electronics applications. J. Mater. Sci. Technol. 30, 97 (2014)

    Article  CAS  Google Scholar 

  49. A.N.G. Krishnan, G.K. Mani, P. Shankar, B. Vutukuri, J.B.B. Rayappan, Gas sensing characteristics of nanostructured ZnO thin film-influence of manganese doping. Chem. Sens. 5, 9 (2015)

    Google Scholar 

  50. M. Thirumoorthi, J.T.J. Prakash, A study of Tin doping effects on physical properties of CdO thin films prepared by sol–gel spin coating method. J. Asian Ceram. Soc. 4, 39 (2016)

    Article  Google Scholar 

  51. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, S. AlFaify, A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater. Sci. Semicond. Process. 107, 104807 (2020)

    Article  CAS  Google Scholar 

  52. S. Munir, S.M. Shah, H. Hussain, R. Ali khan, Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Mater. Des. 92, 64 (2016)

    Article  CAS  Google Scholar 

  53. V.B. Kamble, A.M. Umarji, Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 3, 082120 (2013)

    Article  CAS  Google Scholar 

  54. K.K. Khun, A. Mahajan, R.K. Bedi, SnO2 thick films for room temperature gas sensing applications. J. Appl. Phys. 106, 124509 (2009)

    Article  CAS  Google Scholar 

  55. V.V. Petrov, T.N. Nazarova, A.N. Korolev, N.F. Kopilova, Thin sol–gel SiO2–SnOx–AgOy films for low temperature ammonia gas sensor. Sens. Actuators B 133, 291 (2008)

    Article  CAS  Google Scholar 

  56. O. Anisimov, N. Maksimova, E. Chernikov, E. Sevastyanov, N. Sergeychenko: Sensitivity to NH 3 of SnO 2 thin films prepared by magnetron sputtering, in 2009 International Siberian Conference on Control and Communications, (IEEE, City, 2009), pp. 189

  57. S. Rani, S.C. Roy, M.C. Bhatnagar, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films. Sens. Actuators B 122, 204 (2007)

    Article  CAS  Google Scholar 

  58. N.V. Toan, C.M. Hung, N.V. Duy, N.D. Hoa, D.T.T. Le, N.V. Hieu, Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance. Mater. Sci. Eng. B 224, 163 (2017)

    Article  CAS  Google Scholar 

  59. S. Shao, R. Koehn, H. Wu, T. Wu, W.-F. Rao, Generation of highly ordered nanoporous Sb–SnO2 thin films with enhanced ethanol sensing performance at low temperature. Sens. Actuators B 145, 847 (2010)

    CAS  Google Scholar 

  60. R. Mariappan, V. Ponnuswamy, P. Suresh, Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct. 52, 500 (2012)

    Article  CAS  Google Scholar 

  61. M.H. Diwan, W.M. Kadem, Z.T. Khodair, Effect of modified SnO2 film surface on the ammonia gas sensitivity at room temperature, in AIP Conference Proceedings, (2144, AIP Publishing LLC, City, 2019), p. 030010

Download references

Acknowledgments

The authors extend their sincere appreciation to the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University for funding this research through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Karunakaran, T. Alshahrani or Mohd. Shkir.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest in current work.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 556 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheswari, S., Karunakaran, M., Hariprasad, K. et al. Enhanced room-temperature ammonia vapor-sensing activity of nebulizer spray pyrolysis fabricated SnO2 thin films: an effect of Er doping. Journal of Materials Research 36, 657–667 (2021). https://doi.org/10.1557/s43578-020-00033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00033-0

Keywords

Navigation