Skip to main content
Log in

Shear-coupled grain boundary migration in bicrystal Ni with metallic dopant segregation

  • Article
  • Metallic Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The shear-coupled grain boundary (GB) migration in bicrystal Ni with metallic dopant segregation was investigated by the molecular dynamics simulations. Different from the approximately linear relation of the GB migration of pure bicrystal Ni with the nominal shear strain, the curve of doped bicrystal Ni can be divided into three stages. The threshold strain, saturated strain, and saturated GB migration displacement can be used to characterize them. They are considerably affected by the Cr concentration in GB, temperature, and dopant type. The higher the dopant concentration is or the lower the temperature is, the greater the resistance to GB migration is. Cu dopant induces the greatest resistance, Cr and Fe dopants have great effect on the GB migration, but Co has almost no influence. All these hindering effects can be explained from the variation of the number of pinning points induced by the dopant atoms in GB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S Suresh. Acta Mater. 51, 5743 (2003)

    Article  CAS  Google Scholar 

  2. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006)

    Article  CAS  Google Scholar 

  3. M. Dao, L. Lu, R. Asaro, J. Dehosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007)

    Article  CAS  Google Scholar 

  4. S.N. Mathaudhu, B.L. Boyce, Thermal stability: the next frontier for nanocrystalline materials. JOM 67, 2785 (2015)

    Article  Google Scholar 

  5. A.R. Kalidindi, T. Chookajorn, C.A. Schuh, Nanocrystalline materials at equilibrium: a thermodynamic review. JOM 67, 2834 (2015)

    Article  CAS  Google Scholar 

  6. H.R. Peng, M.M. Gong, Y.Z. Chen, F. Liu, Thermal stability of nanocrystalline materials: thermodynamics and kinetics. Int. Mater. Rev. 62, 303 (2016)

    Article  CAS  Google Scholar 

  7. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18, 253 (2014)

    Article  CAS  Google Scholar 

  8. F. Abdeljawad, S.M. Foiles, Stabilization of nanocrystalline alloys via grain boundary segregation: a diffuse interface model. Acta Mater. 101, 159 (2015)

    Article  CAS  Google Scholar 

  9. T. Chookajorn, H.A. Murdoch, C.A. Schuh, Design of stable nanocrystalline alloys. Science 337, 951 (2012)

    Article  CAS  Google Scholar 

  10. A. Detor, C. Schuh, Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007)

    Article  CAS  Google Scholar 

  11. A.J. Detor, C.A. Schuh, Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22, 3233 (2007)

    Article  CAS  Google Scholar 

  12. A.J. Detor, M.K. Miller, C.A. Schuh, Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006)

    Article  CAS  Google Scholar 

  13. L. Zheng, G. Schmitz, Y. Meng, R. Chellali, R. Schlesiger, Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys. Crit. Rev. Solid State Mater. Sci. 37, 181 (2012)

    Article  CAS  Google Scholar 

  14. J.D. Schuler, O.K. Donaldson, T.J. Rupert, Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W. Scripta Mater. 154, 49 (2018)

    Article  CAS  Google Scholar 

  15. V. Borovikov, M.I. Mendelev, A.H. King, Solute effects on interfacial dislocation emission in nanomaterials: nucleation site competition and neutralization. Scripta Mater. 154, 12 (2018)

    Article  CAS  Google Scholar 

  16. Q. Li, J. Zhang, H. Tang, H. Ye, Y. Zheng, Regulating the mechanical properties of nanocrystalline nickel via molybdenum segregation: an atomistic study. Nanotechnology 30, 275702 (2019)

    Article  CAS  Google Scholar 

  17. C.J. Wang, B.N. Yao, Z.R. Liu, X.F. Kong, D. Legut, R.F. Zhang, Y. Deng, Effects of solutes on dislocation nucleation and interface sliding of bimetal semi-coherent interface. Int. J. Plast. 131, 102725 (2020)

    Article  CAS  Google Scholar 

  18. S. Pal, K. Vijay Reddy, D.E. Spearot, Zr segregation in Ni–Zr alloy: implication on deformation mechanism during shear loading and bending creep. J. Mater. Sci. 55, 6172 (2020)

    Article  CAS  Google Scholar 

  19. J. Schäfer, Y. Ashkenazy, K. Albe, R.S. Averback, Effect of solute segregation on thermal creep in dilute nanocyrstalline Cu alloys. Mater. Sci. Eng. A 546, 307 (2012)

    Article  CAS  Google Scholar 

  20. T. Frolov, S.V. Divinski, M. Asta, Y. Mishin, Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. Phys. Rev. Lett. 110, 255502 (2013)

    Article  CAS  Google Scholar 

  21. S. Yang, N. Zhou, H. Zheng, S.P. Ong, J. Luo, First-order interfacial transformations with a critical point: breaking the symmetry at a symmetric tilt grain boundary. Phys. Rev. Lett. 120, 085702 (2018)

    Article  CAS  Google Scholar 

  22. Y. Hu, T.J. Rupert, Atomistic modeling of interfacial segregation and structural transitions in ternary alloys. J. Mater. Sci. 54, 3975 (2018)

    Article  CAS  Google Scholar 

  23. K.V. Reddy, S. Pal, Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep. J. Mol. Model. 24, 87 (2018)

    Article  CAS  Google Scholar 

  24. R. Tran, Z. Xu, N. Zhou, B. Radhakrishnan, J. Luo, O.S. Ping, Computational study of metallic dopant segregation and embrittlement at molybdenum grain boundaries. Acta Mater. 117, 91 (2016)

    Article  CAS  Google Scholar 

  25. J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953 (2006)

    Article  CAS  Google Scholar 

  26. J.W. Cahn, J.E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater. 52, 4887 (2004)

    Article  CAS  Google Scholar 

  27. J.W. Cahn, Y. Mishin, A. Suzuki, Duality of dislocation content of grain boundaries. Philos. Mag. 86, 3965 (2006)

    Article  CAS  Google Scholar 

  28. L. Wan, S. Wang, Shear response of the Σ11, ⟨1 1 0⟩{1 3 1} symmetric tilt grain boundary studied by molecular dynamics. Model. Simul. Mater. Sci. Eng. 17, 045008 (2009)

    Article  CAS  Google Scholar 

  29. L. Wan, S. Wang, Shear response of theΣ9⟨110⟩{221}symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods. Phys. Rev. B 82, 045008 (2010)

    Article  CAS  Google Scholar 

  30. L. Wan, W. Han, K. Chen, Bi-crystallographic lattice structure directs grain boundary motion under shear stress. Sci. Rep. (2015). https://doi.org/10.1038/srep13441

    Article  Google Scholar 

  31. L. Zhang, C. Lu, G. Michal, K. Tieu, K. Cheng, Molecular dynamics study on the atomic mechanisms of coupling motion of [0 0 1] symmetric tilt grain boundaries in copper bicrystal. Mater. Res. Exp. 1, 015019 (2014)

    Article  CAS  Google Scholar 

  32. L. Zhang, C. Lu, K. Tieu, X. Zhao, L. Pei, The shear response of copper bicrystals with Sigma11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation. Nanoscale 7, 7224 (2015)

    Article  CAS  Google Scholar 

  33. P. Wang, X. Yang, D. Peng, Initiation, evolution, and saturation of coupled grain boundary motion in nanocrystalline materials. Comput. Mater. Sci. 112, 289 (2016)

    Article  CAS  Google Scholar 

  34. X. Yang, J. Li, P. Wang, Grain boundary migration in nanocrystalline Ni under constant shear strains and its mechanism. Comput. Mater. Sci. 176, 109530 (2020)

    Article  CAS  Google Scholar 

  35. K. Lücke, K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities. Acta Metall. 5, 628 (1957)

    Article  Google Scholar 

  36. J.W. Cahn, The impurity-drag effect in grain boundary motion. Acta Metall. 10, 789 (1962)

    Article  CAS  Google Scholar 

  37. M. Hillert, B. Sundman, A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys. Acta Metall. 24, 731 (1976)

    Article  CAS  Google Scholar 

  38. J. Schäfer, K. Albe, Competing deformation mechanisms in nanocrystalline metals and alloys: coupled motion versus grain boundary sliding. Acta Mater. 60, 6076 (2012)

    Article  CAS  Google Scholar 

  39. J. Schäfer, K. Albe, Influence of solutes on the competition between mesoscopic grain boundary sliding and coupled grain boundary motion. Scripta Mater. 66, 315 (2012)

    Article  CAS  Google Scholar 

  40. K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, C.C. Koch, Grain-size stabilization in nanocrystalline FeZr alloys. Scripta Mater. 59, 530 (2008)

    Article  CAS  Google Scholar 

  41. A. Detor, C. Schuh, Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system. Acta Mater. 55, 4221 (2007)

    Article  CAS  Google Scholar 

  42. P.C. Millett, R.P. Selvam, A. Saxena, Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 54, 297 (2006)

    Article  CAS  Google Scholar 

  43. J. Han, S.L. Thomas, D.J. Srolovitz, Grain-boundary kinetics: a unified approach. Prog. Mater. Sci. 98, 386 (2018)

    Article  Google Scholar 

  44. Q. Zhu, G. Cao, J. Wang, C. Deng, J. Li, Z. Zhang, S.X. Mao, In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 10, 156 (2019)

    Article  CAS  Google Scholar 

  45. A. Rajabzadeh, F. Mompiou, S. Lartigue-Korinek, N. Combe, M. Legros, D.A. Molodov, The role of disconnections in deformation-coupled grain boundary migration. Acta Mater. 77, 223 (2014)

    Article  CAS  Google Scholar 

  46. S. Sanyal, U.V. Waghmare, P.R. Subramanian, M.F.X. Gigliotti, Effect of dopants on grain boundary decohesion of Ni: a first-principles study. Appl. Phys. Lett. 93, 223113 (2008)

    Article  CAS  Google Scholar 

  47. X. Zhou, J. Song, Effects of alloying elements on vacancies and vacancy-hydrogen clusters at coherent twin boundaries in nickel alloys. Acta Mater. 148, 9 (2018)

    Article  CAS  Google Scholar 

  48. L. Zhu, J. Zhou, H. Yang, Z. Sun, Energetics and kinetics of hydrogen at the grain boundary of the Ni alloys: a first-principles study. J. Alloys Compd. 795, 343 (2019)

    Article  CAS  Google Scholar 

  49. F.A.M. Ahmed, H.-T. Xue, F.-L. Tang, J.-P. An, Y.-Q. Luo, X.-F. Lu, J.-Q. Ren, Segregation of alloying elements and their effects on the thermodynamic stability and fracture strength of γ-Ni/γ′-Ni3Al interface. J. Mater. Sci. 55, 12513 (2020)

    Article  CAS  Google Scholar 

  50. G. Arora, K.D. Rawat, D.S. Aidhy, Effect of atomic order/disorder on Cr segregation in Ni-Fe alloys. J. Appl. Phys. 124, 115303 (2018)

    Article  CAS  Google Scholar 

  51. D. Farkas, A. Caro, Model interatomic potentials and lattice strain in a high-entropy alloy. J. Mater. Res. 33, 3218 (2018)

    Article  CAS  Google Scholar 

  52. P.C. Millett, R.P. Selvam, A. Saxena, Improving grain boundary sliding resistance with segregated dopants. Mater. Sci. Eng. A. 431, 92 (2006)

    Article  CAS  Google Scholar 

  53. P. Steve, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  Google Scholar 

  54. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393 (1999)

    Article  CAS  Google Scholar 

  55. P. Wang, X. Yang, D. Peng, Molecular dynamics investigation of the grain boundary migration hysteresis of nanocrystalline Ni under cyclic shear loading. Model. Simul. Mater. Sci. Eng. 25, 025006 (2017)

    Article  Google Scholar 

  56. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  57. D. Faken, H. Jonsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 11772137 and 11572135) and the Fundamental Research Funds for Central Universities (No. 2662017QD018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Yang.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2076 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, X. & Wang, P. Shear-coupled grain boundary migration in bicrystal Ni with metallic dopant segregation. Journal of Materials Research 36, 775–783 (2021). https://doi.org/10.1557/s43578-020-00030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00030-3

Navigation