Skip to main content

Advertisement

Log in

Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO3-based antiferroelectric ceramics

  • Invited Paper
  • Focus Issue: Lead-Free Ferroelectric Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lead-free dielectric capacitor with high energy storage density is in great demand, but with the challenge of limited energy storage density. In this work, Ag(Nb0.85Ta0.15)O3-x wt% Ag2O (ANTAx) lead-free ceramics with nonstoichiometric Ag2O were fabricated, with the aim of improving energy storage density. The element concentration, phase structure, microstructure, dielectric property, and energy storage performance were investigated. Improved recoverable energy storage density (Wrec) of 4.8 J/cm3 were achieved for ANTA1 ceramics with 1 wt% Ag2O in excess, demonstrating obvious improvement compared with the stoichiometric counterpart. In addition, the ANTA1 ceramics also exhibited highly stable energy storage performance in the temperature range from room temperature to 150 °C, with variations less than 4% and 5% for Wrec and energy storage efficiency, respectively. The good properties may be associated with the dismissing of various defects by adding excess Ag2O. This work demonstrates that silver stoichiometry engineering is an effective method to improve energy storage properties of AgNbO3-based antiferroelectric ceramics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. X.H. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielect. 3(01), 1330001 (2013)

    Article  Google Scholar 

  2. Z. Yao, Z. Song, H. Hao, Z. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances. Adv. Mater. 29(20), 1601727 (2017)

    Article  Google Scholar 

  3. Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562), 576 (2015)

    Article  CAS  Google Scholar 

  4. L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.F. Li, S.J. Zhang, Perovskite Lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72 (2018)

    Article  Google Scholar 

  5. H. Zhou, X. Liu, X. Zhu, X. Chen, CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J. Am. Ceram. Soc. 101(5), 1999 (2018)

    Article  CAS  Google Scholar 

  6. Y. Huang, F. Li, H. Hao, F.Q. Xia, H.X. Liu, S.J. Zhang, (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J. Materiomics. 5, 385 (2019)

    Article  Google Scholar 

  7. Y. Huang, Q.H. Guo, H. Hao, H.X. Liu, S.J. Zhang, Tailoring properties of (Bi0.51Na0.47)TiO3 based dielectrics for energy storage applications. J. Eur. Ceram. Soc. 39(15), 4752 (2019)

    Article  CAS  Google Scholar 

  8. N.N. Luo, K. Han, F.P. Zhuo, L.J. Liu, X.Y. Chen, B.L. Peng, X.P. Wang, Q. Feng, Y.Z. Wei, Design for high energy storage density and temperatureinsensitive lead-free antiferroelectric ceramics. J. Mater. Chem. C. 7, 4999 (2019)

    Article  CAS  Google Scholar 

  9. G.Z. Zhang, D.Y. Zhu, X.S. Zhang, L. Zhang, J.Q. Yi, B. Xie, Y.K. Zeng, Q. Li, Q. Wang, S.L. Jiang, High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc. 98(4), 1175 (2015)

    Article  CAS  Google Scholar 

  10. Z. Liu, X.F. Chen, W. Peng, C.H. Xu, X.L. Dong, F. Cao, G.S. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106(26), 262901 (2015)

    Article  Google Scholar 

  11. Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.Y. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, Y.X. Yan, High energy density in silver niobate ceramics. J. Mater. Chem. A 4(44), 17279 (2016)

    Article  CAS  Google Scholar 

  12. L. Zhao, Q. Liu, S.J. Zhang, J.F. Li, Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C. 4(36), 8380 (2016)

    Article  CAS  Google Scholar 

  13. N.N. Luo, K. Han, F.P. Zhuo, C. Xu, G.Z. Zhang, L.J. Liu, X.Y. Chen, C.Z. Chen, H.F. Zhou, Y.Z. Wei, Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 7(23), 14118 (2019)

    Article  CAS  Google Scholar 

  14. L. Zhao, J. Gao, Q. Liu, S.J. Zhang, J.F. Li, Silver Niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping. ACS Appl. Mater. Interfaces 10(1), 819 (2018)

    Article  CAS  Google Scholar 

  15. L. Zhao, Q. Liu, J. Gao, S.J. Zhang, J.F. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017)

    Article  Google Scholar 

  16. N.N. Luo, K. Han, M.J. Cabral, X.Z. Liao, S.J. Zhang, C.Z. Liao, G.Z. Zhang, X.Y. Chen, Q. Feng, J.F. Li, Y.Z. Wei, Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 11(1), 4824 (2020)

    Article  CAS  Google Scholar 

  17. K. Han, N.N. Luo, S.F. Mao, F.P. Zhuo, L.J. Liu, B.L. Peng, X.Y. Chen, C.Z. Hu, H.F. Zhou, Y.Z. Wei, Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity. J. Mater. Chem. A. 7(46), 26293 (2019)

    Article  CAS  Google Scholar 

  18. Z.N. Yan, D. Zhang, X.F. Zhou, H. Qi, H. Luo, K.C. Zhou, I. Abrahams, H.X. Yan, Silver niobate based lead-free ceramics with high energy storage density. J. Mater. Chem. A 7(17), 10702 (2019)

    Article  CAS  Google Scholar 

  19. L.Q. Cheng, K. Wang, F.Z. Yao, F.Y. Zhu, J.F. Li, Composition inhomogeneity due to alkaline volatilization in Li-Modified (K, Na)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc. 96(9), 2693 (2013)

    Article  CAS  Google Scholar 

  20. K. Wang, J.F. Li, Low-temperature sintering of Li-modified (K, Na)NbO3 lead-free ceramics: sintering behavior, microstructure, and electrical properties. J. Am. Ceram. Soc. 93(4), 1101 (2010)

    Article  CAS  Google Scholar 

  21. N.N. Luo, Q. Li, Z.G. Xia, Effect of Pb(Fe1/2Nb1/2)O3modification on dielectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–PbZr0.52Ti0.48O3ceramics. Mater. Res. Bull. 46(9), 1333 (2011)

    Article  CAS  Google Scholar 

  22. N.N. Luo, Q. Li, Z.G. Xia, X.C. Chu, Phase diagram, temperature stability, and electrical properties of (0.85-x)Pb(Mg1/3Nb2/3)O3-0.10Pb(Fe1/2Nb1/2)O3–0.05PbZrO3–xPbTiO3system. J. Am. Ceram. Soc. 95(10), 3246 (2012)

    Article  CAS  Google Scholar 

  23. N.N. Luo, S.J. Zhang, Q. Li, C. Xu, Z.L. Yang, Q.F. Yan, Y.L. Zhang, T.R. Shrout, New Pb(Mg1/3Nb2/3)O3–Pb(In1/2Nb1/2)O3–PbZrO3–PbTiO3 quaternary ceramics: morphotropic phase boundary design and electrical properties. ACS Appl. Mater. Interfaces. 8(24), 15506 (2016)

    Article  CAS  Google Scholar 

  24. B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, J.F. Scott, X.R. Zeng, H.T. Huang, Giant Electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. electron. mater. 1(5), 1500052 (2015)

    Article  Google Scholar 

  25. A. Kania, A. Niewiadomski, S. Mig, I. Jankowska-Sumara, M. Pawlik, Z. Ujma, J. Koperski, J. Suchanicz, Silver deficiency and excess effects on quality, dielectric properties and phase transitions of AgNbO3 ceramics. J. Eur. Ceram. Soc. 34(7), 1761 (2014)

    Article  CAS  Google Scholar 

  26. H.U. Khan, K. Alam, M. Mateenullah, T. Blaschke, B.S. Haq, Synthesis and characterization of solid solution Ag(NbxTa1-x)O3 (x = 0, 0.25, 0.5, 0.75, 1.0). J. Eur. Ceram. Soc. 35(10), 2775 (2015)

    Article  CAS  Google Scholar 

  27. M. Hiroki, C.A.J. Fisher, A. Kuwabara, D.S. Fu, First-principles study of point defect formation in AgNbO3. Jpn. J. Appl. Phys. 52, 09KF08 (2013)

    Article  Google Scholar 

  28. Y. Tian, J. Li, Q.Y. Hu, K. Yu, Y.Y. Zhuang, G. Viola, I. Abrahams, Z. Xu, X.Y. Wei, H.X. Yan, Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 7(2), 834 (2019)

    Article  CAS  Google Scholar 

  29. I. Levin, V. Krayzman, J.C. Woicik, J. Karapetrova, T. Proffen, M.G. Tucker, I.M. Reaney, Structural changes underlying the diffuse dielectric response in AgNbO3. Phys. Rev. B 79(10), 104113 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 52072080, 11864004), the Natural Science Foundation of Guangxi province (Grant No. 2017GXNSFBA198132), and the Science and Technology Major Project of Guangxi province (Grant No. AA17204100).The author also thanks the fund (Grant No. 20KF-16) from the Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/ Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin (541004), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nengneng Luo or Fujita Toyohisa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, N., Tang, X., Han, K. et al. Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO3-based antiferroelectric ceramics. Journal of Materials Research 36, 1067–1075 (2021). https://doi.org/10.1557/s43578-020-00018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00018-z

Keywords

Navigation