Skip to main content
Log in

Applications of unified phase-field methods to designing microstructures and mechanical properties of alloys

  • Phase-Field Method and Its Applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article highlights the applications of integrated unified phase-field methods in guiding the design of high-performance engineering alloys and the optimization of manufacturing processes within an integrated computational materials engineering (ICME) framework. By combining macro process data, solidification, precipitation, and recrystallization conditions, phase-field modeling is used to predict the precipitation, segregation, and crack tendency of NbC as the crack source in austenitic stainless steels, thereby optimizing casting parameters and improving the product qualification rate from 40% to more than 80%. Phase-field modeling is also used to reveal the internal microstructure evolution of Mg–Li-based alloys during spinodal phase separation and help design the Mg–Li–Al alloy with an ultrahigh specific strength (470–500 kN m kg−1) surpassing all engineering alloys. Phase-field simulations of dendritic growth incorporating macro-temperature field and shrinkage defects in solidification allow us to adjust the casting process parameters for optimizing the alloy and casting’s mechanical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The data sets generated and/or analyzed during the reviewed studies are available via each publication or corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. World Steel Association, World Steel in Figures 2023 (World Steel Association, Brussels, 2023). https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2023/

  2. Y.C. Jin, H. Hou, Y.H. Zhao, Numerical Simulation of Material Forming Process (Weapons Industry Press, Beijing, 2004)

    Google Scholar 

  3. H. Hou, Y.C. Jin, Y.H. Zhao, Liquid Molding Process and CAD (National Defence Industry Press, Beijing, 2012)

    Google Scholar 

  4. Y.H. Zhao, Microstructure Simulation of Material Phase Transition Process (National Defence Industry Press, Beijing, 2010)

    Google Scholar 

  5. L.-Q. Chen, MRS Bull. 44(7), 520 (2019). https://doi.org/10.1557/mrs.2019.162

    Article  Google Scholar 

  6. L.Q. Chen, L.D. Chen, S.V. Kalinin, G. Klimeck, S.K. Kumar, J. Neugebauer, I. Terasaki, NPJ Comput. Mater. 1, 15007 (2015). https://doi.org/10.1038/npjcompumats.2015.7

    Article  CAS  Google Scholar 

  7. L.-Q. Chen, MRS Bull. 48(10), 968 (2023). https://doi.org/10.1557/s43577-023-00604-6

    Article  Google Scholar 

  8. L.Q. Chen, J. Zhu, Y.J. Hao, L. Zhang, G. Xiang, B.R. Yu, X.J. Long, J. Phys. Chem. Solids 75, 1295 (2014). https://doi.org/10.1016/j.jpcs.2014.06.015

    Article  CAS  Google Scholar 

  9. L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041

    Article  CAS  Google Scholar 

  10. L.-Q. Chen, C. Wolverton, V. Vaithyanathan, Z.K. Liu, MRS Bull. 26(3), 197 (2001). https://doi.org/10.1557/mrs2001.42

    Article  CAS  Google Scholar 

  11. L.Q. Chen, A.G. Khachaturyan, Phys. Rev. Lett. 70, 1477 (1993). https://doi.org/10.1103/PhysRevLett.70.1477

    Article  CAS  PubMed  Google Scholar 

  12. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, Physica D 94, 135 (1996). https://doi.org/10.1016/0167-2789(95)00298-7

    Article  Google Scholar 

  13. I. Steinbach, O. Shchyglo, Curr. Opin. Solid State Mater. Sci. 15, 87 (2011). https://doi.org/10.1016/j.cossms.2011.01.001

    Article  CAS  Google Scholar 

  14. Y.Z. Wang, L.Q. Chen, A.G. Khachaturyan, Phys. Rev. B 46, 11194 (1992). https://doi.org/10.1103/PhysRevB.46.11194

    Article  CAS  Google Scholar 

  15. Y.Z. Wang, J. Li, Acta Mater. 58, 1212 (2010). https://doi.org/10.1016/j.actamat.2009.10.041

    Article  CAS  Google Scholar 

  16. L.-Q. Chen, Thermodynamics of Equilibrium and Stability of Materials (Springer, Singapore, 2022). https://doi.org/10.1007/978-981-13-8691-6

    Book  Google Scholar 

  17. L.Q. Chen, Y.H. Zhao, Prog. Mater. Sci. 124, 100868 (2022). https://doi.org/10.1016/j.pmatsci.2021.100868

    Article  CAS  Google Scholar 

  18. L.W. Chen, J. Li, W.P. Chen, X.L. Pei, H. Hou, Y.H. Zhao, J. Mater. Res. Technol. 24, 3839 (2023). https://doi.org/10.1016/j.jmrt.2023.04.083

    Article  CAS  Google Scholar 

  19. L.W. Chen, Y.H. Zhao, F. Yan, H. Hou, J. Alloys Compd. 725, 673 (2017). https://doi.org/10.1016/j.jallcom.2017.07.169

    Article  CAS  Google Scholar 

  20. T.Z. Xin, Y.H. Zhao, R. Mahjoub, J.X. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, Sci. Adv. 7, ebaf3039 (2021). https://doi.org/10.1126/sciadv.abf3039

    Article  CAS  Google Scholar 

  21. T.Z. Xin, S. Tang, F. Ji, L.Q. Cui, B.B. He, X. Lin, X.L. Tian, H. Hou, Y.H. Zhao, M. Ferry, Acta Mater. 239, 118248 (2022). https://doi.org/10.1016/j.actamat.2022.118248

    Article  CAS  Google Scholar 

  22. J.Y. Li, Y.H. Zhao, L.W. Li, X.F. Niu, H. Hou, Spec. Cast. Nonferrous Alloys 41, 588 (2022). https://doi.org/10.15980/j.tzzz.2021.05.014

    Article  CAS  Google Scholar 

  23. J.H. Jing, L.W. Chen, K.L. Wang, Y. Zhao, L. Chen, H. Hou, W. Ni, Y. Zhao, J. Mater. Res. Technol. 27, 7024 (2023). https://doi.org/10.1016/j.jmrt.2023.11.075

    Article  CAS  Google Scholar 

  24. Y.H. Zhao, Z.Q. Li, K.L. Wang, Integrated optimization method for continuous casting process of austenitic stainless steel based on phase-field method, China Patent, ZL 2023 1 1463827.1 (2023)

  25. H.H. Zhang, J.L. Wu, M.J. Long, W. Guo, X.D. Yang, D.F. Chen, Continuous Cast. 4, 47 (2022). https://link.oversea.cnki.net/doi/10.13228/j.boyuan.issn1005-4006.20220013

  26. J. Wang, J.X. Dong, M.C. Zhang, X.S. Xie, J. Univ. Sci. Technol. Beijing 34, 799 (2012). https://doi.org/10.13374/j.issn1001-053x.2012.07.012

    Article  CAS  Google Scholar 

  27. G. Wu, K.C. Chan, L. Zhu, L. Sun, J. Lu, Nature 545, 80 (2017). https://doi.org/10.1038/nature21691

    Article  CAS  PubMed  Google Scholar 

  28. K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009). https://doi.org/10.1126/science.1159610

    Article  CAS  PubMed  Google Scholar 

  29. X. Li, K. Lu, Science 364, 733 (2019). https://doi.org/10.1126/science.aaw9905

    Article  CAS  PubMed  Google Scholar 

  30. Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Science 359, 447 (2018). https://doi.org/10.1126/science.aap8716

    Article  CAS  PubMed  Google Scholar 

  31. Z. Wu, W.A. Curtin, Nature 526, 62 (2015). https://doi.org/10.1038/nature1536

    Article  CAS  PubMed  Google Scholar 

  32. X.Z. Lin, D.L. Chen, J. Mater. Eng. Perform. 17, 894 (2008). https://doi.org/10.1007/s11665-008-9247-z

    Article  CAS  Google Scholar 

  33. K. Kubota, M. Mabuchi, K. Higashi, J. Mater. Sci. 34, 2255 (1999). https://doi.org/10.1023/A:1004561205627

    Article  CAS  Google Scholar 

  34. K. Lu, Science 328, 319 (2010). https://doi.org/10.1126/science.1185866

    Article  CAS  PubMed  Google Scholar 

  35. D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, Mater. Sci. Eng. A 443, 248 (2007). https://doi.org/10.1016/j.msea.2006.08.037

    Article  CAS  Google Scholar 

  36. L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, X.C. Li, Nature 528, 539 (2015). https://doi.org/10.1038/nature16445

    Article  CAS  PubMed  Google Scholar 

  37. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544, 460 (2017). https://doi.org/10.1038/nature22032

    Article  CAS  PubMed  Google Scholar 

  38. J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012). https://doi.org/10.1007/s11661-012-1217-2

    Article  CAS  Google Scholar 

  39. S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49, 4277 (2001). https://doi.org/10.1016/S1359-6454(01)00297-X

    Article  CAS  Google Scholar 

  40. W. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14, 1229 (2015). https://doi.org/10.1038/nmat4435

    Article  CAS  PubMed  Google Scholar 

  41. C. Barrett, O.J.T.A. Trautz, Trans. Metall. Soc. AIME 175, 579 (1948). https://cir.nii.ac.jp/crid/1370857593657403938

  42. Y.B. Kang, A.D. Pelton, P. Chartrand, C.D. Fuerst, CALPHAD 32, 413 (2008). https://doi.org/10.1016/j.calphad.2008.03.002

    Article  CAS  Google Scholar 

  43. J.W. Cahn, Acta Metall. 10, 179 (1962). https://doi.org/10.1016/0001-6160(62)90114-1

    Article  CAS  Google Scholar 

  44. I. Baker, R.K. Zheng, D.W. Saxey, S. Kuwano, M.W. Wittmann, J.A. Loudis, K.S. Prasad, Z. Liu, R. Marceau, P.R. Munroe, S.P. Ringer, Intermetallics 17, 886 (2009). https://doi.org/10.1016/j.intermet.2009.03.016

    Article  CAS  Google Scholar 

  45. W.P. Chen, H. Hou, Y.T. Zhang, W. Liu, Y.H. Zhao, J. Mater. Res. Technol. 24, 8401 (2023). https://doi.org/10.1016/j.jmrt.2023.05.024

    Article  CAS  Google Scholar 

  46. W.P. Chen, “Phase-Field Study of α-Mg Solidification Dendrite Growth in Mg–Zn–(Al) Alloy,” PhD dissertation, North University of China, Taiyuan (2023)

  47. L.W. Chen, Y.H. Zhao, X.P. Sun, J.H. Jing, Y. Zhao, R.Y. Fan, H. Hou, Spec. Cast. Nonferrous Alloys 43, 865 (2023). https://doi.org/10.15980/j.tzzz.2023.07.001

    Article  Google Scholar 

  48. J.H. Jing, L.W. Chen, X.P. Sun, K.L. Wang, Y. Zhao, Y.H. Zhao, Spec. Cast. Nonferrous Alloys 43, 1168 (2023). https://doi.org/10.15980/j.tzzz.2023.09.003

    Article  Google Scholar 

  49. Y.H. Zhao, K.X. Liu, H. Hou, L.Q. Chen, Mater. Des. 216, 110555 (2022). https://doi.org/10.1016/j.matdes.2022.110555

    Article  CAS  Google Scholar 

  50. Y. Liu, X.Q. Liu, Z.L. Liu, G.D. Liu, R.Y. Fan, H. Yin, J. Li, Mater. Sci. Technol. 34, 1142 (2018). https://doi.org/10.1080/02670836.2018.1424796

    Article  CAS  Google Scholar 

  51. L. He, M. Zhang, D. Wang, X. Ye, Y. Zhou, D. Ruan, W. Zhang, Opt. Laser Technol. 161, 109172 (2023). https://doi.org/10.1016/j.optlastec.2023.109172

    Article  CAS  Google Scholar 

  52. C. Shuai, W. Liu, H.Q. Li, K.L. Wang, Y.T. Zhang, T.Z. Xie, L.W. Chen, H. Hou, Y.H. Zhao, Int. J. Plast. 170, 103772 (2023). https://doi.org/10.1016/j.ijplas.2023.103772

    Article  CAS  Google Scholar 

  53. Q.W. Guo, H. Hou, K.L. Wang, M.X. Li, P.K. Liaw, Y.H. Zhao, NPJ Comput. Mater. 9, 185 (2023). https://doi.org/10.1038/s41524-023-01139-9

    Article  CAS  Google Scholar 

  54. Y.H. Zhao, NPJ Comput. Mater. 9, 94 (2023). https://doi.org/10.1038/s41524-023-01038-z

    Article  Google Scholar 

  55. Y.H. Zhao, H. Xing, L.J. Zhang, H.B. Huang, D.K. Sun, X.L. Dong, Y.X. Shen, J.C. Wang, Acta Metall. Sin. (Engl. Lett.) 36, 11 (2023). https://doi.org/10.1007/s40195-023-01593-w

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank financial support from the National Natural Science Foundation of China (Grant Nos. 52375394, 52074246), the National Defense Basic Scientific Research Program of China (No. JCKY2020408B002), and the funding from Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing. The authors also would like to express our acknowledgment to L.-Q. Chen of The Pennsylvania State University for his helpful guidance in phase-field modeling and writing. The phase-field simulations are carried out by using the EasyPhase software package developed by Y. Z.’s group.

Funding

The work was supported by the National Natural Science Foundation of China (Grant Nos. 52375394, 52074246), and the National Defense Basic Scientific Research Program of China (Grant No. JCKY2020408B002).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z.: methodology, investigation, writing-original draft, EasyPhase software, EasyCast software. T.X.: resources, validation. S.T.: resources, validation. H.W.: resources, validation. X.F.: investigation, funding. H.H.: resources, funding.

Corresponding author

Correspondence to Yuhong Zhao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xin, T., Tang, S. et al. Applications of unified phase-field methods to designing microstructures and mechanical properties of alloys. MRS Bulletin 49, 613–625 (2024). https://doi.org/10.1557/s43577-024-00720-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-024-00720-x

Keywords

Navigation