Skip to main content
Log in

Interface potentials inside solid-state batteries: Origins and implications

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Interface resistance has become a significant bottleneck for solid-state batteries (SSBs). Most studies of interface resistance have focused on extrinsic mechanisms such as interface reactions and imperfect contact between electrodes and solid electrolytes. Interface potentials are an important intrinsic mechanism that is often ignored. Here, we highlight Kelvin probe force microscopy (KPFM) as a tool to image the local potential at interfaces inside SSBs, examining the existing literature and discussing challenges in interpretation. Drawing analogies with electron transport in metal/semiconductor interfaces, we showcase a formalism that predicts intrinsic ionic resistance based on the properties of the contacting phases, and we emphasize that future battery designs should start from material pairs with low intrinsic resistance. We conclude by outlining future directions in the study of interface potentials through both theory and experiment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. J. Janek, W.G. Zeier, Nat. Energy 1(9), 16141 (2016)

    Article  Google Scholar 

  2. N.J. Dudney, Mater. Sci. Eng. B 116(3), 245 (2005)

    Article  Google Scholar 

  3. N.J. Dudney, J. Li, Science 347(6218), 131 (2015)

    Article  CAS  Google Scholar 

  4. N.J. Dudney, W.C. West, J. Nanda (eds.), Handbook of Solid State Batteries, 2nd edn., vol. 6 (World Scientific, 2015)

  5. D. Danilov, R.A.H. Niessen, P.H.L. Notten, J. Electrochem. Soc. 158(3), A215 (2011)

    Article  CAS  Google Scholar 

  6. Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li, J. Janek, L.F. Nazar, C.-W. Nan, J. Maier, M. Armand, L. Chen, Energy Environ. Sci. 11(8), 1945 (2018)

    Article  CAS  Google Scholar 

  7. A.C. Luntz, J. Voss, K. Reuter, J. Phys. Chem. Lett. 6(22), 4599 (2015)

    Article  CAS  Google Scholar 

  8. A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Chem. Rev. 120(14), 6878 (2020)

    Article  CAS  Google Scholar 

  9. S.A. Pervez, M.A. Cambaz, V. Thangadurai, M. Fichtner, ACS Appl. Mater. Interfaces 11(25), 22029 (2019)

    Article  CAS  Google Scholar 

  10. Y. Zhu, X. He, Y. Mo, J. Mater. Chem. A 4(9), 3253 (2016)

    Article  CAS  Google Scholar 

  11. Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara, G. Ceder, Nat. Rev. Mater. 5(2), 105 (2020)

    Article  CAS  Google Scholar 

  12. X. Chen, W. He, L.-X. Ding, S. Wang, H. Wang, Energy Environ. Sci. 12(3), 938 (2019)

    Article  CAS  Google Scholar 

  13. H.-K. Tian, Y. Qi, J. Electrochem. Soc. 164(11), E3512 (2017)

    Article  CAS  Google Scholar 

  14. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  15. L.J. Brillson (ed.), Contacts to Semiconductors: Fundamentals and Technology, 1st edn. (William Andrew Publishing/Noyes, 1993)

  16. M.W. Swift, Y. Qi, Phys. Rev. Lett. 122(16), 167701 (2019)

    Article  Google Scholar 

  17. K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita, C.A.J. Fisher, K. Nonaka, Y. Sugita, Z. Ogumi, Angew. Chem. Int. Ed. 49(26), 4414 (2010)

    Article  CAS  Google Scholar 

  18. X. He, Y. Zhu, Y. Mo, Nat. Commun. 8(1), 15893 (2017)

    Article  CAS  Google Scholar 

  19. Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y. Mo, G. Ceder, Nat. Mater. 14(10), 1026 (2015)

    Article  CAS  Google Scholar 

  20. M. Doyle, T.F. Fuller, J. Newman, J. Electrochem. Soc. 140(6), 1526 (1993)

    Article  CAS  Google Scholar 

  21. G.M. Hobold, J. Lopez, R. Guo, N. Minafra, A. Banerjee, Y.S. Meng, Y. Shao-Horn, B.M. Gallant, Nat. Energy 6(10), 951 (2021)

    Article  CAS  Google Scholar 

  22. D. Fraggedakis, M. McEldrew, R.B. Smith, Y. Krishnan, Y. Zhang, P. Bai, W.C. Chueh, Y. Shao-Horn, M.Z. Bazant, Electrochim. Acta 367, 137432 (2021)

    Article  CAS  Google Scholar 

  23. W. Melitz, J. Shen, A.C. Kummel, S. Lee, Surf. Sci. Rep. 66(1), 1 (2011)

    Article  CAS  Google Scholar 

  24. T.A. Wynn, J.Z. Lee, A. Banerjee, Y.S. Meng, MRS Bull. 43(10), 768 (2018)

    Article  CAS  Google Scholar 

  25. X. Song, W. Yu, S. Zhou, L. Zhao, A. Li, A. Wu, L. Li, H. Huang, Mater. Today Phys. 33, 101037 (2023)

    Article  CAS  Google Scholar 

  26. H. Masuda, N. Ishida, Y. Ogata, D. Ito, D. Fujita, Nanoscale 9(2), 893 (2017)

    Article  CAS  Google Scholar 

  27. M. Otoyama, T. Yamaoka, H. Ito, Y. Inagi, A. Sakuda, M. Tatsumisago, A. Hayashi, J. Phys. Chem. C 125(5), 2841 (2021)

    Article  CAS  Google Scholar 

  28. H. Masuda, K. Matsushita, D. Ito, D. Fujita, N. Ishida, Commun. Chem. 2(1), 140 (2019)

    Article  Google Scholar 

  29. C. Zhu, T. Fuchs, S.A.L. Weber, F.H. Richter, G. Glasser, F. Weber, H.-J. Butt, J. Janek, R. Berger, Nat. Commun. 14(1), 1300 (2023)

    Article  CAS  Google Scholar 

  30. H.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, Y. Qi, Chem. Mater. 31(18), 7351 (2019)

    Article  CAS  Google Scholar 

  31. E.J. Fuller, E. Strelcov, J.L. Weaver, M.W. Swift, J.D. Sugar, A. Kolmakov, N. Zhitenev, J.J. McClelland, Y. Qi, J.A. Dura, A.A. Talin, ACS Energy Lett. 6(11), 3944 (2021)

    Article  CAS  Google Scholar 

  32. S. Sadewasser, T. Glatzel (eds.), Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces, Springer Series in Surface Sciences, vol. 48 (Springer, Berlin, 2012)

  33. A.N. Dey,  J. Electrochem. Soc. 118(10), 1547 (1971)

    Article  CAS  Google Scholar 

  34. D. Rehnlund, F. Lindgren, S. Böhme, T. Nordh, Y. Zou, J. Pettersson, U. Bexell, M. Boman, K. Edström, L. Nyholm, Energy Environ. Sci. 10(6), 1350 (2017)

    Article  CAS  Google Scholar 

  35. M.W. Swift, H. Jagad, J. Park, Y. Qie, Y. Wu, Y. Qi, Curr. Opin. Solid State Mater. Sci. 26(3), 100990 (2022)

    Article  CAS  Google Scholar 

  36. M.W. Swift, J.W. Swift, Y. Qi, Nat. Comput. Sci. 1(3), 212 (2021)

    Article  Google Scholar 

  37. E.J. Fuller, F.E. Gabaly, F. Léonard, S. Agarwal, S.J. Plimpton, R.B. Jacobs-Gedrim, C.D. James, M.J. Marinella, A.A. Talin, Adv. Mater. 29(4), 1604310 (2017)

    Article  Google Scholar 

  38. S. Takeuchi, H. Tan, K.K. Bharathi, G.R. Stafford, J. Shin, S. Yasui, I. Takeuchi, L.A. Bendersky, ACS Appl. Mater. Interfaces 7(15), 7901 (2015)

    Article  CAS  Google Scholar 

  39. A. Yulaev, V. Oleshko, P. Haney, J. Liu, Y. Qi, A.A. Talin, M.S. Leite, A. Kolmakov, Nano Lett. 18(3), 1644 (2018)

    Article  CAS  Google Scholar 

  40. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, New York, 2015)

    Google Scholar 

  41. S.R. Ellis, N.C. Bartelt, F. Léonard, K.C. Celio, E.J. Fuller, D.R. Hughart, D. Garland, M.J. Marinella, J.R. Michael, D.W. Chandler, B. Liao, A.A. Talin, Phys. Rev. B 104(16), L161303 (2021)

    Article  CAS  Google Scholar 

  42. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys. 86(1), 253 (2014)

    Article  Google Scholar 

  43. J. Nanda, C. Wang, P. Liu, MRS Bull. 43(10), 740 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Y.Q. is thankful for helpful discussions with J. Janek.

Funding

Y.Q. acknowledges the support from the National Science Foundation under Grant No. DMR-2054441. E.J.F. and A.A.T. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Grant No. DE-SC0021070. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear Security Administration under Contract No. DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the focus of this perspective. Y.Q. developed the first draft. All authors revised the manuscript.

Corresponding author

Correspondence to Yue Qi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Swift, M.W., Fuller, E.J. et al. Interface potentials inside solid-state batteries: Origins and implications. MRS Bulletin 48, 1239–1246 (2023). https://doi.org/10.1557/s43577-023-00625-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00625-1

Keywords

Navigation