Skip to main content
Log in

Enhancing mechanical performance and wear resistance of Co-free B2/A2 CrFeNiAl alloy via Cr and Ti adjustment

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The adjusted mixture of ordered body-centered cubic (bcc) structure, referred to as B2, and disordered bcc structure, referred to as A2, in high-entropy alloys (HEAs) leads to a substantial enhancement in their strength. Via selecting elements in B2/A2 HEAs, their microstructure could be optimized for desirable properties (e.g., strength, ductility, and wear resistance) to meet requirements for specific applications. In this study, we delved into the effect of interplay between Cr and Ti in shaping the microstructure, mechanical properties, and wear resistance of Co-free B2/A2 CrFeNiAl alloy. CrxFeNiAl and CrxFeNiAlTi0.5 (x = 0, 0.5, 1, and 1.5) alloys were synthesized. For Ti-free FeNiAl alloy, the introduction of Cr led to a transition from a single B2 phase to a mixture of B2 and A2 phases, along with a morphological change from A2 nanoparticles embedded in B2 phase to an alternating lamellar eutectic structure or cellular structure. While in the Ti-containing FeNiAlTi0.5 alloy, Cr induced a shift from a microstructure of B2 + Fe2Ti Laves phase to one consisting of B2 + A2 phases. Ti increased the B2 lattice parameter. Notably, the strength, hardness, and ductility of the HEA increase with increasing Cr content, attributed to the precipitation and augmentation of A2 phase, Cr-facilitated solution hardening, and elimination of the Laves phase. The incorporation of Ti enhances strength at the expense of ductility. For the FeNiAl alloy, the developed oxide film caused by frictional heating during wear test enhanced its wear resistance, surpassing that of harder Cr0.5FeNiAl alloy. The wear resistance was improved with added Cr. Ti also contributes positively to wear resistance due to increased mechanical strength and the formation of a protective oxide scale.

Impact statement

This study demonstrates the effectiveness of modifying mechanical and wear properties of Co-free CrFeNiAl alloy via tuning the B2/A2 phase ratio by adjusting elemental contents. It is shown that Ti increases the B2 lattice parameter, enhancing strength and wear resistance, but compromising ductility. Inclusion of Cr, regardless of Ti’s presence, results in simultaneous improvements in the strength, ductility, and wear resistance. The elucidated mechanism would help design effective HEAs with optimal combinations of mechanical and wear properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

This article is self-containing, including all data.

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004)

    Article  Google Scholar 

  2. E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4, 515 (2019)

    Article  CAS  Google Scholar 

  3. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014)

    Article  Google Scholar 

  4. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016)

    Article  CAS  Google Scholar 

  5. J.W. Yeh, JOM 65, 1759 (2013)

    Article  CAS  Google Scholar 

  6. E.P. George, R.O. Ritchie, MRS Bull. 47(2), 145 (2022)

    Article  Google Scholar 

  7. Z. He, N. Jia, H. Wang, H. Yan, Y. Shen, J. Mater. Sci. Technol. 86, 158 (2021)

    Article  CAS  Google Scholar 

  8. Z.F. He, N. Jia, D. Ma, H.L. Yan, Z.M. Li, D. Raabe, Mater. Sci. Eng. A 759, 437 (2019)

    Article  CAS  Google Scholar 

  9. H. Song, J. Yang, Y.H. Jo, T. Song, H.S. Kim, B.-J. Lee, S. Lee, J. Alloys Compd. 797, 465 (2019)

    Article  CAS  Google Scholar 

  10. D.V. Louzguine-Luzgin, J. Jiang, G.R. Aripov, Y.P. Ivanov, V.I. Polkin, MRS Bull. 47(2), 134 (2022)

    Article  CAS  Google Scholar 

  11. T.M. Butler, M.L. Weaver, J. Alloys Compd. 691, 119 (2017)

    Article  CAS  Google Scholar 

  12. B. Gludovatz, R.O. Ritchie, MRS Bull. 47(2), 176 (2022)

    Article  Google Scholar 

  13. J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Intermetallics 84, 52 (2017)

    Article  Google Scholar 

  14. Y. Dong, L. Jiang, Z. Tang, Y. Lu, T. Li, J. Mater. Eng. Perform. 24, 4475 (2015)

    Article  CAS  Google Scholar 

  15. C. Zhang, Y. Yang, MRS Bull. 47(2), 158 (2022)

    Article  Google Scholar 

  16. X. Zhou, X. Wang, L. Fey, S. He, I. Beyerlein, P. Cao, J. Marian, MRS Bull. 48(7), 777 (2023)

    Article  Google Scholar 

  17. W. Jiang, Y. Zhu, Y. Zhao, Front. Mater. 8, 792359 (2022)

    Article  Google Scholar 

  18. S. Sonal, J. Lee, Metals (Basel) 11(12), 1980 (2021)

    Google Scholar 

  19. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Acta Mater. 59, 6308 (2011)

    Article  CAS  Google Scholar 

  20. S. Wang, L. Chen, Q. Li, S. Wang, M. Wu, S. Yang, D. Xiang, Metals (Basel) 12, 191 (2022)

    Article  CAS  Google Scholar 

  21. W. Zhang, Z. Ma, C. Li, C. Guo, D. Liu, H. Zhao, L. Ren, J. Mater. Sci. Technol. 114, 102 (2022)

    Article  CAS  Google Scholar 

  22. B. Liu, J. Wang, Y. Liu, Q. Fang, Y. Wu, S. Chen, C.T. Liu, Intermetallics 75, 25 (2016)

    Article  Google Scholar 

  23. C.H. Tsau, S.X. Lin, C.H. Fang, Mater. Chem. Phys. 186, 534 (2017)

    Article  CAS  Google Scholar 

  24. C. Li, J.C. Li, M. Zhao, Q. Jiang, J. Alloys Compd. 504, 515 (2010)

    Article  Google Scholar 

  25. W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Intermetallics 26, 44 (2012)

    Article  Google Scholar 

  26. M. Wu, G. Diao, J.F. Yuan, D. Fraser, J. Li, R. Chung, D.Y. Li, Wear 523, 204765 (2023)

    Article  CAS  Google Scholar 

  27. M. Wu, K. Chen, Z. Xu, D.Y. Li, Wear 462–463, 203493 (2020)

    Article  Google Scholar 

  28. T.T. Shun, W.J. Hung, Adv. Mater. Sci. Eng. 2018, 5826467 (2018)

    Article  Google Scholar 

  29. M. Löbel, T. Lindner, T. Mehner, T. Lampke, Entropy (Basel) 20, 505 (2018)

    Article  Google Scholar 

  30. M. Wu, R.C. Setiawan, D.Y. Li, Wear 492–493, 204231 (2022)

    Article  Google Scholar 

  31. A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)

    Article  CAS  Google Scholar 

  32. X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Acta Mater. 141, 59 (2017)

    Article  CAS  Google Scholar 

  33. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124, 143 (2017)

    Article  CAS  Google Scholar 

  34. W. Jiao, T. Li, X. Chang, Y. Lu, G. Yin, Z. Cao, T. Li, J. Alloys Compd. 902, 163814 (2022)

    Article  CAS  Google Scholar 

  35. S. Guo, C. Ng, C.T. Liu, Mater. Res. Lett. 1, 228 (2013)

    Article  CAS  Google Scholar 

  36. T. Borkar, B. Gwalani, D. Choudhuri, T. Alam, A.S. Mantri, M.A. Gibson, R. Banerjee, Intermetallics 71, 31 (2016)

    Article  CAS  Google Scholar 

  37. L. Zhang, D. Zhou, B. Li, Mater. Lett. 216, 252 (2018)

    Article  CAS  Google Scholar 

  38. X. Chen, J.Q. Qi, Y.W. Sui, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Mater. Sci. Eng. A 681, 25 (2017)

    Article  CAS  Google Scholar 

  39. Y. Guo, L. Liu, W. Zhang, K. Yao, Z. Zhao, J. Shang, J. Qi, M. Chen, R. Zhao, F. Wu, J. Alloys Compd. 889, 161676 (2021)

    Article  Google Scholar 

  40. J.L. Li, Z. Li, Q. Wang, C. Dong, P.K. Liaw, Acta Mater. 197, 10 (2020)

    Article  CAS  Google Scholar 

  41. L. Li, Z. Li, A. Kwiatkowski da Silva, Z. Peng, H. Zhao, B. Gault, D. Raabe, Acta Mater. 178, 1 (2019)

    Article  Google Scholar 

  42. J.E. Morral, S. Chen, J. Phase Equilib. Diffus. 42, 673 (2021)

    Article  CAS  Google Scholar 

  43. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Mater. 59, 182 (2011)

    Article  CAS  Google Scholar 

  44. Z. Jiang, W. Chen, Z. Xia, W. Xiong, Z. Fu, Intermetallics 108, 45 (2019)

    Article  CAS  Google Scholar 

  45. Y.X. Zhuang, X.L. Zhang, X.Y. Gu, Entropy (Basel) 20, 987 (2018)

    Article  Google Scholar 

  46. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Mater. Sci. Eng. A 527, 7210 (2010)

    Article  Google Scholar 

  47. T.T. Shun, L.Y. Chang, M.H. Shu, Mater. Sci. Eng. A 556, 170 (2012)

    Article  CAS  Google Scholar 

  48. N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, M.A. Tikhonovsky, S.V. Zherebtsov, J. Alloys Compd. 770, 194 (2019)

    Article  CAS  Google Scholar 

  49. G. Diao, A. He, D.Y. Li, M. Wu, Z. Xu, W. Li, Q.Y. Li, Mater. Sci. Eng. A 856, 143910 (2022)

    Article  CAS  Google Scholar 

  50. A. Gali, E.P. George, Intermetallics 39, 74 (2013)

    Article  CAS  Google Scholar 

  51. J.H. Zhang, T. Jin, Y.B. Xu, Z.Q. Hu, J. Mater. Sci. Technol. 18, 159 (2002)

    Google Scholar 

  52. L. Huang, M. Long, W. Liu, S. Li, Mater. Lett. 293, 129718 (2021)

    Article  CAS  Google Scholar 

  53. S. Gao, T. Kong, M. Zhang, X. Chen, Y.W. Sui, Y.J. Ren, J.Q. Qi, F.X. Wei, Y.Z. He, Q.K. Meng, Z. Sun, J. Mater. Res. 34, 819 (2019)

    Article  CAS  Google Scholar 

  54. Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu,  J. Mater. Sci. Technol. 34, 349 (2018)

    Article  CAS  Google Scholar 

  55. C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Acta Mater. 160, 158 (2018)

    Article  CAS  Google Scholar 

  56. Q. He, Y. Yang, Front. Mater. 5, 42 (2018)

    Article  Google Scholar 

  57. M.M. Khruschov, Wear 28, 69 (1974)

    Article  Google Scholar 

  58. Y. Zhang, H. Wu, X. Yu, D. Tong, Corros. Sci. 200, 110211 (2022)

    Article  CAS  Google Scholar 

  59. L. Sánchez, M.P. Hierro, F.J. Pérez, Oxid. Met. 71, 173 (2009)

    Article  Google Scholar 

  60. P. Guo, S. Ma, M. Jiao, P. Lv, J. Xing, L. Xu, Z. Huang, Materials (Basel) 15, 557 (2022)

    Article  CAS  Google Scholar 

  61. T.F.J. Quinn, Wear 216, 262 (1998)

    Article  CAS  Google Scholar 

  62. H. So, Wear 184, 161 (1995)

    Article  CAS  Google Scholar 

  63. A. Erdogan, K.M. Doleker, S. Zeytin, JOM 71, 3499 (2019)

    Article  CAS  Google Scholar 

  64. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloys Compd. 760, 15 (2018)

    Article  CAS  Google Scholar 

  65. S.W. Yang, Oxid. Met. 15, 375 (1981)

    Article  CAS  Google Scholar 

  66. M. Abbasi, D.I. Kim, J.H. Shim, W.S. Jung, J. Alloys Compd. 658, 210 (2016)

    Article  CAS  Google Scholar 

  67. X. Tang, D.Y. Li, Scr. Mater. 58, 1090 (2008)

    Article  CAS  Google Scholar 

  68. R. Yılmaz, A.O. Kurt, A. Demir, Z. Tatlı, J. Eur. Ceram. Soc. 27, 1319 (2007)

    Article  Google Scholar 

  69. I. Radu, D.Y. Li, Wear 259, 453 (2005)

    Article  CAS  Google Scholar 

  70. M. Wu, K. Chen, Z. Xu, D.Y. Li, Wear 462–463, 203493 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from Alberta Innovates, the Natural Sciences and Engineering Research Council of Canada, Trimay and Mitacs.

Funding

This work is supported by the Natural Sciences and Engineering Research Council of Canada, Alberta Innovates, Trimay, Mitacs.

Author information

Authors and Affiliations

Authors

Contributions

M.W. and D.L. conceived the idea, designed the experiments, and wrote the manuscript. R.K.S. helped make the alloy samples and conducted the SEM examination. A.H. carried out the TEM examination and data analysis. M.W. and G.D. evaluated the alloys’ properties and completed additional characterization work. D.C. helped in the data analysis and reviewed and edited the manuscript. D.L. supervised the research project. All authors contributed to general discussion.

Corresponding author

Correspondence to Dongyang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Sim, R.K., He, A. et al. Enhancing mechanical performance and wear resistance of Co-free B2/A2 CrFeNiAl alloy via Cr and Ti adjustment. MRS Bulletin 49, 25–37 (2024). https://doi.org/10.1557/s43577-023-00624-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00624-2

Keywords

Navigation