Skip to main content
Log in

Interfacial instabilities in halide-based solid-state batteries

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

All-solid-state batteries have emerged as a promising technology for energy storage, offering improved safety and potential for higher energy density. Halide-based batteries have gained popularity due to the advantageous characteristics of electrolytes, including decent ion conductivity, good formability, high-voltage stability, and moisture resistivity. Despite the impressive cycle life observed in halide-based batteries under high stack pressures or at elevated temperatures, poor cathode–electrolyte stabilities still pose a significant challenge that results in rapid capacity decay under ambient temperature and low pressure. The poor stability at the halide–anode interface further limits the choice of electrode materials for high-energy applications. This article presents a review of interfacial instability in halide-based solid-state batteries, addressing both the chemical, electrochemical, and mechanical origins of these instabilities at the cathode–electrolyte and anode–electrolyte interfaces. We also discuss state-of-the-art approaches to mitigate interfacial instabilities and highlight their limitations. Finally, we propose perspectives and future directions for resolving interfacial instabilities in halide-based solid-state batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Y. Bae Song, H. Kwak, W. Cho, K.S. Kim, Y. Seok Jung, K.-H. Park, Curr. Opin. Solid State Mater. Sci. 26, 100977 (2022). https://doi.org/10.1016/j.cossms.2021.100977

    Article  CAS  Google Scholar 

  2. Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei, H. Yang, H. Li, X. Guo, Adv. Sci. 10, 2201718 (2023). https://doi.org/10.1002/advs.202201718

    Article  CAS  Google Scholar 

  3. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Sci. Adv. 3, e1601659 (2017). https://doi.org/10.1126/sciadv.1601659

    Article  CAS  Google Scholar 

  4. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  5. H. Kwak, S. Wang, J. Park, Y. Liu, K.T. Kim, Y. Choi, Y. Mo, Y.S. Jung, ACS Energy Lett. 7, 1776 (2022). https://doi.org/10.1021/acsenergylett.2c00438

    Article  CAS  Google Scholar 

  6. T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 30, 1803075 (2018). https://doi.org/10.1002/adma.201803075

    Article  CAS  Google Scholar 

  7. S. Wang, Q. Bai, A.M. Nolan, Y. Liu, S. Gong, Q. Sun, Y. Mo, Angew. Chem. Int. Ed. 58, 8039 (2019). https://doi.org/10.1002/anie.201901938

    Article  CAS  Google Scholar 

  8. M. Feinauer, H. Euchner, M. Fichtner, M.A. Reddy, ACS Appl. Energy Mater. 2, 7196 (2019). https://doi.org/10.1021/acsaem.9b01166

    Article  CAS  Google Scholar 

  9. C. Wang, J. Liang, J. Luo, J. Liu, X. Li, F. Zhao, R. Li, H. Huang, S. Zhao, L. Zhang, J. Wang, X. Sun, Sci. Adv. 7, eabh1896 (2021). https://doi.org/10.1126/sciadv.abh1896

    Article  CAS  Google Scholar 

  10. Y. Han, S.H. Jung, H. Kwak, S. Jun, H.H. Kwak, J.H. Lee, S.-T. Hong, Y.S. Jung, Adv. Energy Mater. 11, 2100126 (2021). https://doi.org/10.1002/aenm.202100126

    Article  CAS  Google Scholar 

  11. H. Kwak, D. Han, J. Lyoo, J. Park, S.H. Jung, Y. Han, G. Kwon, H. Kim, S.-T. Hong, K.-W. Nam, Y.S. Jung, Adv. Energy Mater. 11, 2003190 (2021). https://doi.org/10.1002/aenm.202003190

    Article  CAS  Google Scholar 

  12. J. Park, D. Han, H. Kwak, Y. Han, Y.J. Choi, K.-W. Nam, Y.S. Jung, Chem. Eng. J. 425, 130630 (2021). https://doi.org/10.1016/j.cej.2021.130630

    Article  CAS  Google Scholar 

  13. G. Xu, L. Luo, J. Liang, S. Zhao, R. Yang, C. Wang, T. Yu, L. Wang, W. Xiao, J. Wang, J. Yu, X. Sun, Nano Energy 92, 106674 (2022). https://doi.org/10.1016/j.nanoen.2021.106674

    Article  CAS  Google Scholar 

  14. L. Zhou, T.-T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud, Q. Zhang, J. Janek, L.F. Nazar, Nat. Energy 7, 83 (2022). https://doi.org/10.1038/s41560-021-00952-0

    Article  CAS  Google Scholar 

  15. X. Gao, B. Liu, B. Hu, Z. Ning, D.S. Jolly, S. Zhang, J. Perera, J. Bu, J. Liu, C. Doerrer, E. Darnbrough, D. Armstrong, P.S. Grant, P.G. Bruce, Joule 6, 636 (2022). https://doi.org/10.1016/j.joule.2022.02.008

    Article  CAS  Google Scholar 

  16. X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, K.R. Adair, X. Sun, Energy Environ. Sci. 12, 2665 (2019). https://doi.org/10.1039/C9EE02311A

    Article  CAS  Google Scholar 

  17. L. Zhou, C.Y. Kwok, A. Shyamsunder, Q. Zhang, X. Wu, L.F. Nazar, Energy Environ. Sci. 13, 2056 (2020). https://doi.org/10.1039/D0EE01017K

    Article  CAS  Google Scholar 

  18. W. Kim, J. Noh, S. Lee, K. Yoon, S. Han, S. Yu, K.-H. Ko, K. Kang, Adv. Mater. 35(32), 2301631 (2023). https://doi.org/10.1002/adma.202301631

    Article  Google Scholar 

  19. T. Koç, M. Hallot, E. Quemin, B. Hennequart, R. Dugas, A.M. Abakumov, C. Lethien, J.-M. Tarascon, ACS Energy Lett. 7, 2979 (2022). https://doi.org/10.1021/acsenergylett.2c01668

    Article  CAS  Google Scholar 

  20. C. Zhao, J. Liang, X. Li, N. Holmes, C. Wang, J. Wang, F. Zhao, S. Li, Q. Sun, X. Yang, J. Liang, X. Lin, W. Li, R. Li, S. Zhao, H. Huang, L. Zhang, S. Lu, X. Sun, Nano Energy 75, 105036 (2020). https://doi.org/10.1016/j.nanoen.2020.105036

    Article  CAS  Google Scholar 

  21. X. Shi, Z. Zeng, M. Sun, B. Huang, H. Zhang, W. Luo, Y. Huang, Y. Du, C. Yan, Nano Lett. 21, 9325 (2021). https://doi.org/10.1021/acs.nanolett.1c03573

    Article  CAS  Google Scholar 

  22. X. Li, J. Liang, J.T. Kim, J. Fu, H. Duan, N. Chen, R. Li, S. Zhao, J. Wang, H. Huang, X. Sun, Adv. Mater. 34, 2200856 (2022). https://doi.org/10.1002/adma.202200856

    Article  CAS  Google Scholar 

  23. J. Wang, L. Chen, H. Li, F. Wu, Energy Environ. Mater. 6(4), e12613 (2023). https://doi.org/10.1002/eem2.12613

    Article  Google Scholar 

  24. P. Wang, W. Qu, W.-L. Song, H. Chen, R. Chen, D. Fang, Adv. Funct. Mater. 29, 1900950 (2019). https://doi.org/10.1002/adfm.201900950

    Article  CAS  Google Scholar 

  25. D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12, 194 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  Google Scholar 

  26. L.M. Riegger, R. Schlem, J. Sann, W.G. Zeier, J. Janek, Angew. Chem. Int. Ed. 60, 6718 (2021). https://doi.org/10.1002/anie.202015238

    Article  CAS  Google Scholar 

  27. S.-K. Otto, L.M. Riegger, T. Fuchs, S. Kayser, P. Schweitzer, S. Burkhardt, A. Henss, J. Janek, Adv. Mater. Interfaces 9, 2102387 (2022). https://doi.org/10.1002/admi.202102387

    Article  CAS  Google Scholar 

  28. M.N. Obrovac, V.L. Chevrier, Chem. Rev. 114, 11444 (2014). https://doi.org/10.1021/cr500207g

    Article  CAS  Google Scholar 

  29. S. Luo, Z. Wang, X. Li, X. Liu, H. Wang, W. Ma, L. Zhang, L. Zhu, X. Zhang, Nat. Commun. 12, 6968 (2021). https://doi.org/10.1038/s41467-021-27311-7

    Article  CAS  Google Scholar 

  30. M. Wan, S. Kang, L. Wang, H.-W. Lee, G.W. Zheng, Y. Cui, Y. Sun, Nat. Commun. 11, 829 (2020). https://doi.org/10.1038/s41467-020-14550-3

    Article  CAS  Google Scholar 

  31. M. He, Z. Cui, C. Chen, Y. Li, X. Guo, J. Mater. Chem. A 6, 11463 (2018). https://doi.org/10.1039/C8TA02276C

    Article  CAS  Google Scholar 

  32. M. Siniscalchi, J. Liu, J.S. Gibson, S.J. Turrell, J. Aspinall, R.S. Weatherup, M. Pasta, S.C. Speller, C.R.M. Grovenor, ACS Energy Lett. 7, 3593 (2022). https://doi.org/10.1021/acsenergylett.2c01793

    Article  CAS  Google Scholar 

  33. A.L. Santhosha, L. Medenbach, J.R. Buchheim, P. Adelhelm, Batter. Supercaps 2, 524 (2019). https://doi.org/10.1002/batt.201800149

    Article  CAS  Google Scholar 

  34. T. Cheng, B.V. Merinov, S. Morozov, W.A. Goddard III, ACS Energy Lett. 2, 1454 (2017). https://doi.org/10.1021/acsenergylett.7b00319

    Article  CAS  Google Scholar 

  35. S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, Solid State Ionics 318, 102 (2018). https://doi.org/10.1016/j.ssi.2017.07.005

    Article  CAS  Google Scholar 

  36. W. Ji, D. Zheng, X. Zhang, T. Ding, D. Qu, J. Mater. Chem. A 9, 15012 (2021). https://doi.org/10.1039/D1TA03042F

    Article  CAS  Google Scholar 

  37. C. Rosenbach, F. Walther, J. Ruhl, M. Hartmann, T.A. Hendriks, S. Ohno, J. Janek, W.G. Zeier, Adv. Energy Mater. 13, 2203673 (2023). https://doi.org/10.1002/aenm.202203673

    Article  CAS  Google Scholar 

  38. J.-M. Doux, H. Nguyen, D.H.S. Tan, A. Banerjee, X. Wang, E.A. Wu, C. Jo, H. Yang, Y.S. Meng, Adv. Energy Mater. 10, 1903253 (2020). https://doi.org/10.1002/aenm.201903253

    Article  CAS  Google Scholar 

  39. F. Zhao, Q. Sun, C. Yu, S. Zhang, K. Adair, S. Wang, Y. Liu, Y. Zhao, J. Liang, C. Wang, X. Li, X. Li, W. Xia, R. Li, H. Huang, L. Zhang, S. Zhao, S. Lu, X. Sun, ACS Energy Lett. 5, 1035 (2020). https://doi.org/10.1021/acsenergylett.0c00207

    Article  CAS  Google Scholar 

  40. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Sci. Adv. 4, eaau9245 (2018). https://doi.org/10.1126/sciadv.aau9245

    Article  CAS  Google Scholar 

  41. S. Zhang, R. Li, N. Hu, T. Deng, S. Weng, Z. Wu, D. Lu, H. Zhang, J. Zhang, X. Wang, L. Chen, L. Fan, X. Fan, Nat. Commun. 13, 5431 (2022). https://doi.org/10.1038/s41467-022-33151-w

    Article  CAS  Google Scholar 

  42. T. Yu, J. Liang, L. Luo, L. Wang, F. Zhao, G. Xu, X. Bai, R. Yang, S. Zhao, J. Wang, J. Yu, X. Sun, Adv. Energy Mater. 11, 2101915 (2021). https://doi.org/10.1002/aenm.202101915

    Article  CAS  Google Scholar 

  43. W. Tang, W. Xia, F. Hussain, J. Zhu, S. Han, W. Yin, P. Yu, J. Lei, D.S. Butenko, L. Wang, Y. Zhao, J. Power Sources 568, 232992 (2023). https://doi.org/10.1016/j.jpowsour.2023.232992

    Article  CAS  Google Scholar 

  44. H. Kwak, J.-S. Kim, D. Han, J.S. Kim, J. Park, G. Kwon, S.-M. Bak, U. Heo, C. Park, H.-W. Lee, K.-W. Nam, D.-H. Seo, Y.S. Jung, Nat. Commun. 14, 2459 (2023). https://doi.org/10.1038/s41467-023-38037-z

    Article  CAS  Google Scholar 

  45. Y.-C. Yin, J.-T. Yang, J.-D. Luo, G.-X. Lu, Z. Huang, J.-P. Wang, P. Li, F. Li, Y.-C. Wu, T. Tian, Y.-F. Meng, H.-S. Mo, Y.-H. Song, J.-N. Yang, L.-Z. Feng, T. Ma, W. Wen, K. Gong, L.-J. Wang, H.-X. Ju, Y. Xiao, Z. Li, X. Tao, H.-B. Yao, Nature 616, 77 (2023). https://doi.org/10.1038/s41586-023-05899-8

    Article  CAS  Google Scholar 

  46. R. Zhang, C. Wang, P. Zou, R. Lin, L. Ma, L. Yin, T. Li, W. Xu, H. Jia, Q. Li, S. Sainio, K. Kisslinger, S.E. Trask, S.N. Ehrlich, Y. Yang, A.M. Kiss, M. Ge, B.J. Polzin, S.J. Lee, W. Xu, Y. Ren, H.L. Xin, Nature 610, 67 (2022). https://doi.org/10.1038/s41586-022-05115-z

    Article  CAS  Google Scholar 

  47. X. Zhao, Y. Tian, Z. Lun, Z. Cai, T. Chen, B. Ouyang, G. Ceder, Joule 6, 1654 (2022). https://doi.org/10.1016/j.joule.2022.05.018

    Article  CAS  Google Scholar 

  48. T. Shi, Q. Tu, Y. Tian, Y. Xiao, L.J. Miara, O. Kononova, G. Ceder, Adv. Energy Mater. 10, 1902881 (2020). https://doi.org/10.1002/aenm.201902881

    Article  CAS  Google Scholar 

  49. T. Ma, Z. Wang, D. Wu, P. Lu, X. Zhu, M. Yang, J. Peng, L. Chen, H. Li, F. Wu, Energy Environ. Sci. 16, 2142 (2023). https://doi.org/10.1039/D3EE00420A

    Article  CAS  Google Scholar 

  50. S.-K. Jung, H. Gwon, G. Yoon, L.J. Miara, V. Lacivita, J.-S. Kim, ACS Energy Lett. 6, 2006 (2021). https://doi.org/10.1021/acsenergylett.1c00545

    Article  CAS  Google Scholar 

  51. R. Xu, J. Yao, Z. Zhang, L. Li, Z. Wang, D. Song, X. Yan, C. Yu, L. Zhang, Adv. Sci. 9, 2204633 (2022). https://doi.org/10.1002/advs.202204633

    Article  CAS  Google Scholar 

  52. J. Janek, W.G. Zeier, Nat. Energy 8, 230 (2023). https://doi.org/10.1038/s41560-023-01208-9

    Article  Google Scholar 

  53. A. Bielefeld, D.A. Weber, J. Janek, ACS Appl. Mater. Interfaces 12, 12821 (2020). https://doi.org/10.1021/acsami.9b22788

    Article  CAS  Google Scholar 

  54. J. Janek, W.G. Zeier, Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141

    Article  Google Scholar 

  55. P. Albertus, V. Anandan, C. Ban, N. Balsara, I. Belharouak, J. Buettner-Garrett, Z. Chen, C. Daniel, M. Doeff, N.J. Dudney, B. Dunn, S.J. Harris, S. Herle, E. Herbert, S. Kalnaus, J.A. Libera, D. Lu, S. Martin, B.D. McCloskey, M.T. McDowell, Y.S. Meng, J. Nanda, J. Sakamoto, E.C. Self, S. Tepavcevic, E. Wachsman, C. Wang, A.S. Westover, J. Xiao, T. Yersak, ACS Energy Lett. 6, 1399 (2021). https://doi.org/10.1021/acsenergylett.1c00445

    Article  CAS  Google Scholar 

  56. A. Kato, H. Kowada, M. Deguchi, C. Hotehama, A. Hayashi, M. Tatsumisago, Solid State Ionics 322, 1 (2018). https://doi.org/10.1016/j.ssi.2018.04.011

    Article  CAS  Google Scholar 

  57. K.N. Wood, K.X. Steirer, S.E. Hafner, C. Ban, S. Santhanagopalan, S.-H. Lee, G. Teeter, Nat. Commun. 9, 2490 (2018). https://doi.org/10.1038/s41467-018-04762-z

    Article  CAS  Google Scholar 

  58. S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, J. Am. Chem. Soc. 140, 250 (2018). https://doi.org/10.1021/jacs.7b09531

    Article  CAS  Google Scholar 

  59. J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G.O. Hartley, J. Marrow, P.G. Bruce, Nat. Mater. 18, 1105 (2019). https://doi.org/10.1038/s41563-019-0438-9

    Article  CAS  Google Scholar 

  60. J.A. Lewis, F.J.Q. Cortes, Y. Liu, J.C. Miers, A. Verma, B.S. Vishnugopi, J. Tippens, D. Prakash, T.S. Marchese, S.Y. Han, C. Lee, P.P. Shetty, H.-W. Lee, P. Shevchenko, F. De Carlo, C. Saldana, P.P. Mukherjee, M.T. McDowell, Nat. Mater. 20, 503 (2021). https://doi.org/10.1038/s41563-020-00903-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y.Y. acknowledges the funding support from the US Department of Energy Office of Energy Efficiency & Renewable Energy under the Vehicle Technologies Program, Prime Contract No. DE-ACO5-000R2275.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Zhao or Yan Yao.

Ethics declarations

Conflict of interest

Y.Y. has equity interest in LiBeyond, LLC and Solid Design Instruments, LLC. The University of Houston reviewed and approved their relationship in compliance with its conflict-of-interest policy. The remaining authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Zheng, J., Zhao, L. et al. Interfacial instabilities in halide-based solid-state batteries. MRS Bulletin 48, 1247–1256 (2023). https://doi.org/10.1557/s43577-023-00607-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00607-3

Keywords

Navigation