Skip to main content
Log in

Revealing atomic-to-nanoscale oxidation mechanisms of metallic materials

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Oxidation and corrosion are the leading causes of degradation and failure of metallic materials. Future alloy development requires the incorporation of corrosion resistance into alloy design and processing, and this begins with attaining a fundamental insight into dynamic reaction mechanisms and kinetics between a metal and aggressive environments. With recent advances in environmental transmission electron microscopy, there have been increased efforts to apply this approach to atomically probe the microscopic mechanisms that govern the oxidation and corrosion behavior of metallic materials. Consequently, fundamental insights have been obtained in understanding the underlying processes of oxidation and passivation, including active sites, surface restructuring, oxide/metal interface dynamics, and microstructure and phase evolution. In addition, we discuss ongoing and future developments that are expected to significantly advance the field of high-temperature oxidation and corrosion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Q.Q. Liu, L. Li, N. Cai, W.A. Saidi, G.W. Zhou, Surf. Sci. 627, 75 (2014)

    Article  CAS  Google Scholar 

  2. K. Lahtonen, M. Hirsimaki, M. Lampimaki, M. Valden, J. Chem. Phys. 129(12), 124703 (2008)

    Article  CAS  Google Scholar 

  3. M. Lampimaki, K. Lahtonen, M. Hirsimaki, M. Valden, J. Chem. Phys. 126(3), 034703 (2007)

    Article  CAS  Google Scholar 

  4. H.L. Qin, X.D. Chen, J. Li, P. Sutter, G.W. Zhou, J. Phys. Chem. C 121, 22846 (2017)

    Article  CAS  Google Scholar 

  5. H.L. Qin, X.D. Chen, L. Li, P.W. Sutter, G.W. Zhou, Proc. Natl. Acad. Sci. U.S.A. 112, E103 (2015)

    CAS  Google Scholar 

  6. C.R. Li, X.D. Chen, D.X. Wu, Y.G. Zhu, H.L. Qin, J.T. Sadowski, G.W. Zhou, Acta Mater. 201, 244 (2020)

    Article  CAS  Google Scholar 

  7. J.C. Yang, B. Kolasa, J.M. Gibson, M. Yeadon, Appl. Phys. Lett. 73, 2841 (1998)

    Article  CAS  Google Scholar 

  8. A.P. LaGrow, M.R. Ward, D.C. Lloyd, P.L. Gai, E.D. Boyes, J. Am. Chem. Soc. 139(1), 179 (2017)

    Article  CAS  Google Scholar 

  9. J.Y. Wang, C.R. Li, Y.G. Zhu, J.A. Boscoboinik, G.W. Zhou, J. Phys. Chem. C 122(46), 26519 (2018)

    Article  CAS  Google Scholar 

  10. Q.Q. Liu, H.L. Qin, J. Boscoboinik, G.W. Zhou, Langmuir 32, 11414 (2016)

    Article  CAS  Google Scholar 

  11. J.A. Eastman, P.H. Fuoss, L.E. Rehn, P.M. Baldo, G.W. Zhou, D.D. Fong, L.J. Thompson, Appl. Phys. Lett. 87, 051914 (2005)

    Article  Google Scholar 

  12. H. Iddir, D.D. Fong, P. Zapol, P.H. Fuoss, L.A. Curtiss, G.W. Zhou, J.A. Eastman, Phys. Rev. B 76, 241404(R) (2007)

    Article  Google Scholar 

  13. Q. Zhu, L. Zou, G.W. Zhou, W.A. Saidi, J.C. Yang, Surf. Sci. 652, 98 (2016)

    Article  CAS  Google Scholar 

  14. J. Li, L. Li, G.W. Zhou, J. Chem. Phys. 142, 084701 (2015)

    Article  Google Scholar 

  15. L. Li, M. Xi, Y.F. Shi, G.W. Zhou, Phys. Rev. Lett. 108, 176102 (2012)

    Article  Google Scholar 

  16. Q. Zhu, C. Fleck, W.A. Saidi, A. McGaughey, J.C. Yang, Comput. Mater. Sci. 91, 292 (2014)

    Article  CAS  Google Scholar 

  17. Q. Zhu, W.A. Saidi, J.C. Yang, J. Phys. Chem. C 119, 251 (2014)

    Article  Google Scholar 

  18. Q. Zhu, W.A. Saidi, J.C. Yang, J. Phys. Chem. Lett. 7, 2530 (2016)

    Article  CAS  Google Scholar 

  19. Q. Zhu, W.A. Saidi, J.C. Yang, J. Phys. Chem. C 121(21), 11251 (2017)

    Article  CAS  Google Scholar 

  20. D.X. Wu, J. Li, G.W. Zhou, Surf. Sci. 666, 28 (2017)

    Article  CAS  Google Scholar 

  21. L.K. Wang, C.Y. Cai, Y.C. Zhou, G.W. Zhou, J. Phys. Chem. C 121, 19191 (2017)

    Article  CAS  Google Scholar 

  22. X.H. Sun, W.H. Zhu, D.X. Wu, C.R. Li, J.Y. Wang, Y.G. Zhu, X.B. Chen, J.A. Boscoboinik, R. Sharma, G.W. Zhou, Nat. Commun. 11, 305 (2020)

    Article  CAS  Google Scholar 

  23. D.J. Smith, “High-Resolution Electron Microscopy in Surface Science,” in Chemistry and Physics of Solid Surfaces VI, Springer Series in Surface Sciences, ed. by R. Vanselow, R. Howe (Springer, Berlin, 1986), p. 413

    Google Scholar 

  24. A.N. Chiaramonti, L.D. Marks, J. Mater. Res. 20(7), 1619 (2005)

    Article  CAS  Google Scholar 

  25. X.H. Sun, D.X. Wu, L.F. Zou, S.D. House, X.B. Chen, M. Li, D.N. Zakharov, J.C. Yang, G.W. Zhou, Nature 607, 708 (2022)

    Article  CAS  Google Scholar 

  26. L.F. Zou, J. Li, D. Zakharov, E.A. Stach, G.W. Zhou, Nat. Commun. 8, 307 (2017)

    Article  Google Scholar 

  27. R. Sharma, J. Mater. Res. 20, 1695 (2005)

    Article  CAS  Google Scholar 

  28. J.R. Jinschek, Chem. Commun. 50, 2696 (2014)

    Article  CAS  Google Scholar 

  29. L.F. Allard, S.H. Overbury, W.C. Bigelow, M.B. Katz, D.P. Nackashi, J. Damiano, Microsc. Microanal. 18(4), 656 (2012)

    Article  CAS  Google Scholar 

  30. K.A. Unocic, D. Shin, R.R. Unocic, L.F. Allard Jr., Oxid. Met. 88, 495 (2017)

    Article  CAS  Google Scholar 

  31. K.A. Unocic, F.S. Walden, N.L. Marthe, A.K. Datye, W.C. Bigelow, L.F. Allard, Microsc. Microanal. 26(2), 229 (2020)

    Article  CAS  Google Scholar 

  32. H.H.P. Garza, D. Morsink, J. Xu, M. Sholkina, Y. Pivak, M. Pen, S. van Weperen, Q. Xu, Micro Nano Lett. 12(2), 69 (2017)

    Article  CAS  Google Scholar 

  33. S.B. Vendelbo, C.F. Elkjær, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B.J. Nelissen, R. van Rijn, J.F. Creemer, P.J. Kooyman, S. Helveg, Nat. Mater. 13, 884 (2014)

    Article  CAS  Google Scholar 

  34. F. Wu, N. Yao, Nano Energy 13, 735 (2015)

    Article  CAS  Google Scholar 

  35. K.A. Unocic, D.K. Hensley, F.S. Walden, W.C. Bigelow, M.B. Griffin, S.E. Habas, R.R. Unocic, L.F. Allard, J. Vis. Exp. 173, e62174 (2021)

    Google Scholar 

  36. J.T. Stuckless, C.E. Wartnaby, N. Al-Sarraf, S.J. Dixon-Warren, M. Kovar, D.A. King, J. Chem. Phys. 106(5), 2012 (1997)

    Article  CAS  Google Scholar 

  37. G.W. Zhou, L.L. Luo, L. Li, J. Ciston, E.A. Stach, J.C. Yang, Phys. Rev. Lett. 109, 235502 (2012)

    Article  Google Scholar 

  38. L. Li, L.L. Luo, J. Ciston, W.A. Saidi, E.A. Stach, J.C. Yang, G.W. Zhou, Phys. Rev. Lett. 113, 136104 (2014)

    Article  Google Scholar 

  39. H.J. Grabke, Intermetallics 7(10), 1153 (1999)

    Article  CAS  Google Scholar 

  40. M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, D.S. McPhail, Nature 415(6873), 770 (2002)

    Article  CAS  Google Scholar 

  41. R.S. Dutta, J. Nucl. Mater. 393(2), 343 (2009)

    Article  CAS  Google Scholar 

  42. B.C.H. Steele, A. Heinzel, Nature 414(6861), 345 (2001)

    Article  CAS  Google Scholar 

  43. L.R. Merte, G. Peng, R. Bechstein, F. Rieboldt, C.A. Farberow, L.C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, F. Besenbacher, Science 336(6083), 889 (2012)

    Article  CAS  Google Scholar 

  44. J. Saavedra, H.A. Doan, C.J. Pursell, L.C. Grabow, B.D. Chandler, Science 345(6204), 1599 (2014)

    Article  CAS  Google Scholar 

  45. H. Jung, S.-I. Karato, Science 293(5534), 1460 (2001)

    Article  CAS  Google Scholar 

  46. D.L. Douglass, P. Kofstad, P. Rahmel, G.C. Wood, Oxid. Met. 45(5–6), 529 (1996)

    Article  CAS  Google Scholar 

  47. S.R.J. Saunders, M. Monteiro, F. Rizzo, Prog. Mater. Sci. 53(5), 775 (2008)

    Article  CAS  Google Scholar 

  48. J.P. Angle, P.E.D. Morgan, M.L. Mecartney, J. Am. Ceram. Soc. 96(11), 3372 (2013)

    Article  CAS  Google Scholar 

  49. K.A. Unocic, B.A. Pint, Surf. Coat. Technol. 215, 30 (2013)

    Article  CAS  Google Scholar 

  50. K.A. Unocic, E. Essuman, S. Dryepondt, B.A. Pint, Mater. High Temp. 29(3), 171 (2012)

    Article  CAS  Google Scholar 

  51. K. Onal, M.C. Maris-Sida, G.H. Meier, F.S. Pettit, Mater. High Temp. 20(3), 327 (2003)

    Article  CAS  Google Scholar 

  52. E.A. Gulbransen, T.P. Copan, Nature 186(4729), 959 (1960)

    Article  CAS  Google Scholar 

  53. C.T. Fujii, R.A. Meussner, J. Electrochem. Soc. 111(11), 1215 (1964)

    Article  CAS  Google Scholar 

  54. L.L. Luo, M. Su, P.F. Yan, L.F. Zou, D.K. Schreiber, D.R. Baer, Z.H. Zhu, G.W. Zhou, Y.T. Wang, S.M. Bruemmer, Z.J. Xu, C.M. Wang, Nat. Mater. 17, 514 (2018)

    Article  CAS  Google Scholar 

  55. N.K. Das, T. Shoji, Int. J. Hydrogen Energy 38(3), 1644 (2013)

    Article  CAS  Google Scholar 

  56. Y. Wang, D. Connétable, D. Tanguy, Phys. Rev. B 91(9), 094106 (2015)

    Article  Google Scholar 

  57. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M. Chen, Nat. Mater. 11(9), 775 (2012)

    Article  CAS  Google Scholar 

  58. H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Shimada, M. Haruta, S. Takeda, Science 335(6066), 317 (2012)

    Article  CAS  Google Scholar 

  59. L. Luo, L. Zou, D.K. Schreiber, M.J. Olszta, D.R. Baer, S.M. Bruemmer, G. Zhou, C.-M. Wang, Chem. Commun. 52(16), 3300 (2016)

    Article  CAS  Google Scholar 

  60. T. Norby, J. Phys. IV France 3(9), C9-99 (1993)

    Google Scholar 

  61. N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1949)

    Article  CAS  Google Scholar 

  62. L. Nguyen, T. Hashimoto, D.N. Zakharov, E.A. Stach, A.P. Rooney, B. Berkels, G.E. Thompson, S.J. Haigh, T.L. Burnett, ACS Appl. Mater. Interfaces 10, 2230 (2018)

    Article  CAS  Google Scholar 

  63. X.B. Chen, Z.Y. Liu, D.X. Wu, N. Cai, X.H. Sun, D.N. Zakharov, S. Hwang, D. Su, G.F. Wang, G.W. Zhou, Adv. Mater. Interfaces 9, 2102487 (2022)

    Article  CAS  Google Scholar 

  64. J. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, Corros. Sci. 39, 1397 (1997)

    Article  CAS  Google Scholar 

  65. G.L. Song, A. Atrens, Adv. Eng. Mater. 1, 11 (1999)

    Article  CAS  Google Scholar 

  66. Y. Wang, B. Liu, X.A. Zhao, X. Zhang, Y. Miao, N. Yang, B. Yang, L. Zhang, W. Kuang, J. Li, E. Ma, Z. Shan, Nat. Commun. 9, 4058 (2018)

    Article  Google Scholar 

  67. Y. Wang, M. Li, Y. Yang, E. Ma, Z. Shan, J. Mater. Sci. Technol. 44, 48 (2020)

    Article  CAS  Google Scholar 

  68. Y.C. Wang, B.Y. Liu, Z. Shan, “Design of the Magnesium Composite with High Corrosion Resistance and High Deformability,” in Magnesium Technology 2020, The Minerals, Metals & Materials Series, ed. by J. Jordon, V. Miller, V. Joshi, N. Neelameggham (Springer, Cham, 2020), p. 231

    Google Scholar 

  69. M. Togaru, R. Sainju, L. Zhang, W. Jiang, Y. Zhu, Mater. Charact. 174, 111016 (2021)

    Article  CAS  Google Scholar 

  70. N.J. Zaluzec, M.G. Burke, S.J. Haigh, M.A. Kulzick, Microsc. Microanal. 20, 323 (2014)

    Article  CAS  Google Scholar 

  71. M.G. Burke, G. Bertali, E. Prestat, F. Scenini, S.J. Haigh, Ultramicroscopy 176, 46 (2017)

    Article  CAS  Google Scholar 

  72. J.C. Yang, M.D. Bharadwaj, G.W. Zhou, L. Tropia, Microsc. Microanal. 7, 486 (2001)

    Article  CAS  Google Scholar 

  73. G.W. Zhou, J.A. Eastman, R.C. Birtcher, P.M. Baldo, J.E. Pearson, L.J. Thompson, L. Wang, J.C. Yang, J. Appl. Phys. 101, 033521 (2007)

    Article  Google Scholar 

  74. G.W. Zhou, L. Wang, R.C. Birtcher, P.M. Baldo, J.E. Pearson, J.C. Yang, J.A. Eastman, Phys. Rev. Lett. 96, 226108 (2006)

    Article  Google Scholar 

  75. G.W. Zhou, J.C. Yang, J. Mater. Res. 20(7), 1684 (2005)

    Article  CAS  Google Scholar 

  76. G.W. Zhou, L.L. Luo, L. Li, J. Ciston, E.A. Stach, W.A. Saidi, J.C. Yang, Chem. Commum. 49, 10862 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.W.Z. acknowledges support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0001135. The research on β-NiAl was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle LLC, for the DOE. Part of the capability to introduce water vapor into the in situ gas cell was developed in collaboration with ChemCatBio, a member of the Energy Materials Network, and was supported by the DOE Bioenergy Technology Office under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory. C.M.W. was supported by the DOE, Office of Basic Energy Sciences. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE User Facility operated by Battelle for the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated for the DOE under Contract No. DE-AC06-76RLO 1830. S.J.H. acknowledges funding support from the European Union Horizon 2020 Research and Innovation Programme European Research Council Starting Grant EvoluTEM (No. 715502). Some of the research in this article used electron microscopy and surface science instruments of the Center for Functional Nanomaterials (CFN), which is a DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwen Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Unocic, K.A., Wang, C. et al. Revealing atomic-to-nanoscale oxidation mechanisms of metallic materials. MRS Bulletin 48, 852–863 (2023). https://doi.org/10.1557/s43577-023-00595-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00595-4

Keywords

Navigation