Abstract
In this article, we review the opportunities and challenges associated with complex concentrated materials that exhibit short-range order. Although the presence of such phenomena has been theorized, accurate computational representation, characterization, and materials design have clear challenges associated with its complexity. Advances in both high-resolution and high-fidelity methods, as well as machine-learning-aided techniques, have paved a path for realization of complex concentrated systems with deterministic short-range order, and provide a foundation on which these alloys and materials can be developed for various applications in functional, structural, and biomedical applications.
Graphical abstract

This is a preview of subscription content, access via your institution.




Data availability
The data will be shared according to guidelines from federal sponsors, and within those guidelines, are available on request.
References
D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017). https://doi.org/10.1016/J.ACTAMAT.2016.08.081
P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6, 74 (2004). https://doi.org/10.1002/ADEM.200300507
M. Liu, A. Aiello, Y. Xie, K. Sieradzki, J. Electrochem. Soc. 165, C830 (2018). https://doi.org/10.1149/2.0871811JES/XML
K. Inoue, S. Yoshida, N. Tsuji, Phys. Rev. Mater. 5, 085007 (2021). https://doi.org/10.1103/PHYSREVMATERIALS.5.085007/FIGURES/5/MEDIUM
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. U.S.A. 115, 8919 (2018). https://doi.org/10.1073/PNAS.1808660115/SUPPL_FILE/PNAS.1808660115.SAPP.PDF
Y. Xie, D.M. Artymowicz, P.P. Lopes, A. Aiello, D. Wang, J.L. Hart, E. Anber, M.L. Taheri, H. Zhuang, R.C. Newman, K. Sieradzki, Nat. Mater. 20, 789 (2021). https://doi.org/10.1038/s41563-021-00920-9
N.R. Tailleart, R. Huang, T. Aburada, D.J. Horton, J.R. Scully, Corros. Sci. 59, 238 (2012). https://doi.org/10.1016/J.CORSCI.2012.03.012
Y. Xiong, Y. Yang, H. Joress, E. Padgett, U. Gupta, V. Yarlagadda, D.N. Agyeman-Budu, X. Huang, T.E. Moylan, R. Zeng, A. Kongkanand, F.A. Escobedo, J.D. Brock, F.J. DiSalvo, D.A. Muller, H.D. Abruña, Proc. Natl. Acad. Sci. U.S.A. 116, 1974 (2019). https://doi.org/10.1073/PNAS.1815643116/SUPPL_FILE/PNAS.1815643116.SM04.GIF
S. Chen, T. Wang, X. Li, Y. Cheng, G. Zhang, H. Gao, Acta Mater. 238, 118201 (2022). https://doi.org/10.1016/J.ACTAMAT.2022.118201
Z. Lyu, X. Fan, C. Lee, S.-Y. Wang, R. Feng, P.K. Liaw, J. Mater. Res. 33, 2998 (2018). https://doi.org/10.1557/jmr.2018.273
W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci. 118, 100777 (2021). https://doi.org/10.1016/j.pmatsci.2021.100777
Z. Wu, M.C. Troparevsky, Y.F. Gao, J.R. Morris, G.M. Stocks, H. Bei, Curr. Opin. Solid State Mater. Sci. 21, 267 (2017). https://doi.org/10.1016/j.cossms.2017.07.001
Y. Shang, J. Brechtl, C. Pistidda, P.K. Liaw, High-Entropy Materials: Theory, Experiments, and Applications (Springer, Cham, 2021), p. 435
O.N. Senkov, G.B. Wilks, J.M. Scott, D.M. Miracle, Intermetallics 19, 698 (2011). https://doi.org/10.1016/j.intermet.2011.01.004
Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X. Liu, H. Wang, J. Mater. Sci. Technol. 62, 214 (2021). https://doi.org/10.1016/j.jmst.2020.06.018
H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe, Entropy (Basel) 18, 321 (2016). https://doi.org/10.3390/e18090321
C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, Acta Mater. 160, 158 (2018). https://doi.org/10.1016/j.actamat.2018.08.053
L.R. Owen, N.G. Jones, J. Mater. Res. 33, 2954 (2018). https://doi.org/10.1557/jmr.2018.322
Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34, 349 (2018). https://doi.org/10.1016/j.jmst.2017.07.013
Q. He, Y. Yang, Front. Mater. 5, 42 (2018). https://doi.org/10.3389/fmats.2018.00042
H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Phys. Rev. Mater. 1, 23404 (2017). https://doi.org/10.1103/PhysRevMaterials.1.023404
J. Xiao, N. Wu, O. Ojo, C. Deng, Materialia 12, 100749 (2020). https://doi.org/10.1016/j.mtla.2020.100749
S.-P. Wang, J. Xu, J. Mater. Sci. Technol. 35, 812 (2019). https://doi.org/10.1016/j.jmst.2018.11.014
Y.X. Ye, Z.P. Lu, T.G. Nieh, Scr. Mater. 130, 64 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.019
C. Zhu, Z.P. Lu, T.G. Nieh, Acta Mater. 61, 2993 (2013). https://doi.org/10.1016/j.actamat.2013.01.059
D. Utt, S. Lee, Y. Xing, H. Jeong, A. Stukowski, S.H. Oh, G. Dehm, K. Able, Nat. Commun. 13, 4777 (2022). https://doi.org/10.1038/s41467-022-32134-1
L. Zhang, Y. Xiang, J. Han, D.J. Srolovitz, Acta Mater. 166, 424 (2019). https://doi.org/10.1016/j.actamat.2018.12.032
D.L. Foley, S.H. Huang, E. Anber, L. Shanahan, Y. Shen, A.C. Lang, C.M. Barr, D. Spearot, L. Lamberson, M.L. Taheri, Acta Mater. 200, 1 (2020). https://doi.org/10.1016/j.actamat.2020.08.047
T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. Mccomb, E.P. George, M. Ghazisaeidi, M.J. Mills, Acta Mater. 110, 352 (2016). https://doi.org/10.1016/j.actamat.2016.03.045
W.-R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, I.J. Beyerlein, Acta Mater. 199, 352 (2020). https://doi.org/10.1016/j.actamat.2020.08.044
Z. Xie, W.-R. Jian, S. Xu, I.J. Beyerlein, X. Zhang, Z. Wang, X. Yao, Acta Mater. 221, 117380 (2021). https://doi.org/10.1016/j.actamat.2021.117380
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, Nature 581, 283 (2020). https://doi.org/10.1038/s41586-020-2275-z
M. Zhang, Q. Yu, C. Frey, F. Walsh, M.I. Payne, P. Kumar, D. Liu, T.M. Pollock, M.D. Asta, R.O. Ritchie, Acta Mater. 241, 118380 (2022). https://doi.org/10.1016/j.actamat.2022.118380
D. Sur, E.F. Holcombe, W.H. Blades, E.A. Anber, D.L. Foley, B.L. DeCost, J. Liu, J. Hattrick-Simpers, K. Sieradzki, H. Joress, J.R. Scully, M.L. Taheri, High throughput discovery of lightweight corrosion-resistant compositionally complex alloys (2023), Preprint, https://doi.org/10.48550/arXiv.2302.07988
B.S. Murty, J.W. Yeh, S. Ranganathan, “Functional Properties,” in High Entropy Alloys (Elsevier, London, 2014), chap. 9, p. 149. https://doi.org/10.1016/B978-0-12-800251-3.00009-2
T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Intermetallics 100, 1 (2018). https://doi.org/10.1016/J.INTERMET.2018.05.014
M. Kurniawan, A. Perrin, P. Xu, V. Keylin, M. McHenry, IEEE Magn. Lett. 7, 6105005 (2016). https://doi.org/10.1109/LMAG.2016.2592462
A. Perrin, M. Sorescu, M.T. Burton, D.E. Laughlin, M. McHenry, JOM 69, 2125 (2017). https://doi.org/10.1007/S11837-017-2523-3/TABLES/1
L. Liu, S. Huang, L. Vitos, M. Dong, E. Bykova, D. Zhang, B.S.G. Almqvist, S. Ivanov, J.E. Rubensson, B. Varga, L.K. Varga, P. Lazor, Commun. Phys. 2, 1 (2019). https://doi.org/10.1038/s42005-019-0141-9
K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, H. Sukegawa, S. Mitani, A. Hirohata, Sci. Technol. Adv. Mater. 22, 235 (2021). https://doi.org/10.1080/14686996.2020.1812364
C. Bazioti, O.M. Løvvik, A. Poulia, P.A. Carvalho, A.S. Azar, P. Mikheenko, S. Diplas, A.E. Gunnæs, J. Alloys Compd. 910, 164724 (2022). https://doi.org/10.1016/J.JALLCOM.2022.164724
A. Çakır, A. Mehmet, M. Farle, High Entropy Alloys Mater. 1, 1 (2023). https://doi.org/10.1007/S44210-023-00012-0
K. Xia, P. Nan, S. Tan, Y. Wang, B. Ge, W. Zhang, S. Anand, X. Zhao, J. Snyder, T. Zhu, Energy Environ. Sci. 12(5), 1568 (2019). https://doi.org/10.1039/C8EE03654C
M.A. Krivoglaz, A.A. Smirnov, The Theory of Order-Disorder in Alloys [Translation from Russian] (MacDonald and Co. Ltd, London, 1964)
P.C. Clapp, S.C. Moss, Phys. Rev. 171, 754 (1968). https://doi.org/10.1103/PhysRev.171.754
T. Mohri, J.M. Sanchez, D. de Fontaine, Acta Metall. 33, 1171 (1985)
W. Schweika, A.E. Carlsson, Phys. Rev. B 40, 4990 (1989). https://doi.org/10.1103/PhysRevB.40.4990
S. Kadkhodaei, J.A. Muñoz, JOM 73, 3326 (2021). https://doi.org/10.1007/S11837-021-04840-6
V. Ozoliņš, C. Wolverton, A. Zunger, Phys. Rev. B 57, 6427 (1998). https://doi.org/10.1103/PhysRevB.57.6427
Z.W. Lu, D.B. Laks, S.H. Wei, A. Zunger, Phys. Rev. B 50, 6642 (1994). https://doi.org/10.1103/PhysRevB.50.6642
G. Ghosh, A. van de Walle, M. Asta, Acta Mater. 56, 3202 (2008). https://doi.org/10.1016/J.ACTAMAT.2008.03.006
C. Wolverton, V. Ozoli, A. Zunger, J. Phys. 12, 2749 (2000). https://doi.org/10.1088/0953-8984/12/12/314
C. Wolverton, A. Zunger, Phys. Rev. B 52, 8813 (1995). https://doi.org/10.1103/PhysRevB.52.8813
A. Fernández-Caballero, J.S. Wróbel, P.M. Mummery, D. Nguyen-Manh, J. Phase Equilib. Diffus. 38, 391 (2017). https://doi.org/10.1007/S11669-017-0582-3/FIGURES/8
X.-G. Li, C. Chen, H. Zheng, Y. Zuo, S.P. Ong, NPJ Comput. Mater. 6, 70 (2020). https://doi.org/10.1038/s41524-020-0339-0
S. Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X.-G. Li, J. Ding, S.P. Ong, M. Asta, R.O. Ritchie, Nat. Commun. 12, 4873 (2021). https://doi.org/10.1038/s41467-021-25134-0
P. Singh, A.V. Smirnov, D.D. Johnson, Phys. Rev. B 91, 224204 (2015). https://doi.org/10.1103/PHYSREVB.91.224204/FIGURES/9/MEDIUM
M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Phys. Rev. X 5, 011041 (2015). https://doi.org/10.1103/PHYSREVX.5.011041/FIGURES/2/MEDIUM
J.W. Cahn, Acta Metall. 9, 795 (1961). https://doi.org/10.1016/0001-6160(61)90182-1
J.W. Cahn, Acta Metall. 10, 179 (1962). https://doi.org/10.1016/0001-6160(62)90114-1
G. Grimvall, B. Magyari-Köpe, E.N.M. Ozoliņ, K.A. Persson, Rev. Mod. Phys. 84, 945 (2012). https://doi.org/10.1103/REVMODPHYS.84.945/FIGURES/50/MEDIUM
D. de Fontaine, J. Appl. Crystallogr. 4(1), 15 (1971). https://doi.org/10.1107/S0021889871006174
W.H. Blades, B.W.Y. Redemann, N.C. Smith, D. Sur, M.R. Barbieri, Y. Xie, S. Lech, E. Anber, M. Taheri, C. Wolverton, T.M. McQueen, J.R. Scully, K. Sieradzki, Science (submitted) (2023).
M.J. Waters, J.M. Rondinelli, J. Phys. 33, 445901 (2021). https://doi.org/10.1088/1361-648X/AC1AF0
S. Calvin, XAFS for Everyone (CRC Press, Boca Raton, 2013)
V. Krayzman, I. Levin, J.C. Woicik, T. Proffen, T.A. Vanderah, M.G. Tucker, J. Appl. Crystallogr. 42(5), 867 (2009). https://doi.org/10.1107/S0021889809023541
J.L. Hart, A.C. Lang, Y. Li, S. Shahrezaei, D.D. Alix-Williams, M.L. Falk, S.N. Mathaudhu, A.I. Frenkel, M.L. Taheri, Mater. Today Nano 21, 100298 (2023). https://doi.org/10.1016/J.MTNANO.2022.100298
J.L. Hart, A.C. Lang, A.C. Leff, P. Longo, C. Trevor, R.D. Twesten, M.L. Taheri, Sci. Rep. 7, 8243 (2017). https://doi.org/10.1038/s41598-017-07709-4
M. Newville, P. Liviņ, Y. Yacoby, J.J. Rehr, E.A. Stern, Phys. Rev. B 47, 14126 (1993). https://doi.org/10.1103/PhysRevB.47.14126
S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Phys. Rev. B 52, 2995 (1995). https://doi.org/10.1103/PhysRevB.52.2995
M. Qian, M. Sarikaya, E.A. Stern, Ultramicroscopy 59, 137 (1995). https://doi.org/10.1016/0304-3991(95)00024-U
R.L. McGreevy, J. Phys. 13, R877 (2001). https://doi.org/10.1088/0953-8984/13/46/201
A. Di Cicco, F. Iesari, Phys. Chem. Chem. Phys. 24, 6988 (2022). https://doi.org/10.1039/D1CP05525A
H. Joress, M.L. Green, I. Takeuchi, J.R. Hattrick-Simpers, “Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Structural, and Energy-Related Materials,” in Encyclopedia of Materials: Metals and Alloys (Elsevier, 2022), vol. 2, p. 353. https://doi.org/10.1016/B978-0-12-819726-4.00146-0
H. Joress, B. Ravel, E. Anber, J. Hollenbach, D. Sur, J. Hattrick-Simpers, M.L. Taheri, B. DeCost, Why is EXAFS analysis for multicomponent metals so hard? Challenges and opportunities for measuring ordering in complex concentrated alloys using x-ray absorption spectroscopy (2023), Preprint, https://doi.org/10.48550/arXiv.2303.09539
R.K.W. Marceau, A.V. Ceguerra, A.J. Breen, D. Raabe, S.P. Ringer, Ultramicroscopy 157, 12 (2015). https://doi.org/10.1016/J.ULTRAMIC.2015.05.001
A.V. Ceguerra, M.P. Moody, R.C. Powles, T.C. Petersen, R.K.W. Marceau, S.P. Ringer, Acta Crystallogr. Sect. A 68, 547 (2012). https://doi.org/10.1107/S0108767312025706
A.V. Ceguerra, R.C. Powles, M.P. Moody, S.P. Ringer, Phys. Rev. B 82, 132201 (2010). https://doi.org/10.1103/PHYSREVB.82.132201/FIGURES/3/MEDIUM
Y. Qiu, Y.J. Hu, A. Taylor, M.J. Styles, R.K.W. Marceau, A.V. Ceguerra, M.A. Gibson, Z.K. Liu, H.L. Fraser, N. Birbilis, Acta Mater. 123, 115 (2017). https://doi.org/10.1016/J.ACTAMAT.2016.10.037
T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2nd edn. (Elsevier, Amsterdam, 2012)
A.M.M. Abeykoon, C.D. Malliakas, P. Juhás, E.S. Božin, M.G. Kanatzidis, S.J.L. Billinge, Z. Kristallogr. 227, 248 (2012). https://doi.org/10.1524/ZKRI.2012.1510
T.E. Gorelik, M.U. Schmidt, U. Kolb, S.J.L. Billinge, Microsc. Microanal. 21, 459 (2015). https://doi.org/10.1017/S1431927614014561
X. Mu, D. Wang, T. Feng, C. Kübel, Ultramicroscopy 168, 1 (2016). https://doi.org/10.1016/J.ULTRAMIC.2016.05.009
M.M. Hoque, S. Vergara, P.P. Das, D. Ugarte, U. Santiago, C. Kumara, R.L. Whetten, A. Dass, A. Ponce, J. Phys. Chem. C 123, 19894 (2019). https://doi.org/10.1021/ACS.JPCC.9B02901
X. Mu, L. Chen, R. Mikut, H. Hahn, C. Kübel, Acta Mater. 212, 116932 (2021). https://doi.org/10.1016/J.ACTAMAT.2021.116932
B.H. Savitzky, S.E. Zeltmann, L.A. Hughes, H.G. Brown, S. Zhao, P.M. Pelz, T.C. Pekin, E.S. Barnard, J. Donohue, L. Rangel Dacosta, E. Kennedy, Y. Xie, M.T. Janish, M.M. Schneider, P. Herring, C. Gopal, A. Anapolsky, R. Dhall, K.C. Bustillo, P. Ercius, M.C. Scott, J. Ciston, A.M. Minor, C. Ophus, Microsc. Microanal. 27, 712 (2021). https://doi.org/10.1017/S1431927621000477
Y. Rakita, J.L. Hart, P.P. Das, S. Shahrezaei, D.L. Foley, S.N. Mathaudhu, S. Nicolopoulos, M.L. Taheri, S.J.L. Billinge, Acta Mater. 242, 118426 (2023). https://doi.org/10.1016/J.ACTAMAT.2022.118426
W. Guo, W. Dmowski, J.-Y. Noh, P. Rack, P.K. Liaw, T. Egami, Metall. Mater. Trans. A 44, 1994 (2013). https://doi.org/10.1007/s11661-012-1474-0
L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, Acta Mater. 122, 11 (2017). https://doi.org/10.1016/j.actamat.2016.09.032
F. Zhang, Y. Tong, K. Jin, H. Bei, W.J. Weber, A. Huq, A. Lanzirotti, M. Newville, D.C. Pagan, J.Y.P. Ko, Mater. Res. Lett. 6, 450 (2018). https://doi.org/10.1080/21663831.2018.1478332
P. Thirathipviwat, S. Sato, G. Song, J. Bednarcik, K. Nielsch, J. Jung, J. Han, Scr. Mater. 210, 114470 (2022). https://doi.org/10.1016/j.scriptamat.2021.114470
Y.-Y. Tan, T. Li, Y. Chen, Z.-J. Chen, M.-Y. Su, J. Zhang, Y. Gong, T. Wu, H.-Y. Wang, L.-H. Dai, Scr. Mater. 223, 115079 (2023). https://doi.org/10.1016/j.scriptamat.2022.115079
R. de Ridder, G. van Tendeloo, S. Amelinckx, Acta Crystallogr. Sect. A 32(2), 216 (1976). https://doi.org/10.1107/S0567739476000508
J.M. Cowley, R.J. Murray, Acta Crystallogr. Sect. A 24, 329 (1968). https://doi.org/10.1107/S0567739468000653
K. Ohshima, D. Watanabe, Acta Crystallogr. Sect. A 29, 520 (1973). https://doi.org/10.1107/S0567739473001300
R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581, 283 (2020). https://doi.org/10.1038/s41586-020-2275-z
L. Zhou, Q. Wang, J. Wang, X. Chen, P. Jiang, H. Zhou, F. Yuan, X. Wu, Z. Cheng, E. Ma, Acta Mater. 224, 117490 (2022). https://doi.org/10.1016/j.actamat.2021.117490
P.A. Midgley, A.S. Eggeman, IUCrJ 2, 126 (2015). https://doi.org/10.1107/S2052252514022283
H.-W. Hsiao, R. Feng, H. Ni, K. An, J.D. Poplawsky, P.K. Liaw, J.-M. Zuo, Nat. Commun. 13, 6651 (2022). https://doi.org/10.1038/s41467-022-34335-0
H. Joress, B.L. DeCost, S. Sarker, T.M. Braun, S. Jilani, R. Smith, L. Ward, K.J. Laws, A. Mehta, J.R. Hattrick-Simpers, ACS Comb. Sci. 22(7), 330 (2020). https://doi.org/10.1021/ACSCOMBSCI.9B00215
K.S. Vecchio, O.F. Dippo, K.R. Kaufmann, X. Liu, Acta Mater. 221, 117352 (2021). https://doi.org/10.1016/J.ACTAMAT.2021.117352
M. Abolhasani, K.A. Brown, MRS Bull. 48(2), 134 (2023). https://doi.org/10.1557/s43577-023-00482-y
B.P. MacLeod, F.G.L. Parlane, C.P. Berlinguette, MRS Bull. 48(2), 173 (2023). https://doi.org/10.1557/S43577-023-00476-W
Z. Li, W.T. Nash, S.P. O’Brien, Y. Qiu, R.K. Gupta, N. Birbilis, J. Mater. Sci. Technol. 125, 81 (2022). https://doi.org/10.1016/J.JMST.2022.03.008
A. Nouira, N. Sokolovska, J.-C. Crivello, CrystalGAN: Learning to discover crystallographic structures with generative adversarial networks (2018), Preprint, https://doi.org/10.48550/arXiv.1810.11203
V. Attari, R. Arroyave, Mater. Theory 6, 5 (2022). https://doi.org/10.1186/S41313-021-00038-0
Acknowledgments
N/A.
Funding
M.L.T., J.H., N.S., C.W., J.R., M.W., and G.L. gratefully acknowledge funding in part from the Office of Naval Research (ONR) through the Multidisciplinary University Research Initiative (MURI) program (Award No. N00014-20-1-2368) with program managers D. Shifler and W. Nickerson. M.L.T., D.L.F., and Y.R. also acknowledge funding in part from ONR through Award No. N00014-20-1-2788 with program manager W. Mullins. M.L.T, A.B., and E.A. acknowledge funding in part from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences through Award No. DE-SC0020314 with program manager J. Vetrano. S.B and Y.R. acknowledge funding from the Next Generation Synthesis Center (GENESIS), an Energy Frontier Research Center funded by the DOE, Office of Science, Basic Energy Sciences (Award No. DE-SC0019212).
Author information
Authors and Affiliations
Contributions
M.L.T. conceived of the article and all authors contributed to writing and editing.
Corresponding author
Ethics declarations
Conflict of interest
The authors do not possess any conflicts of interest.
Ethical approval
All authors consent and approve.
Consent for publication
All authors consent to publication.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Taheri, M.L., Anber, E., Barnett, A. et al. Understanding and leveraging short-range order in compositionally complex alloys. MRS Bulletin (2023). https://doi.org/10.1557/s43577-023-00591-8
Accepted:
Published:
DOI: https://doi.org/10.1557/s43577-023-00591-8