Skip to main content
Log in

Understanding and leveraging short-range order in compositionally complex alloys

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In this article, we review the opportunities and challenges associated with complex concentrated materials that exhibit short-range order. Although the presence of such phenomena has been theorized, accurate computational representation, characterization, and materials design have clear challenges associated with its complexity. Advances in both high-resolution and high-fidelity methods, as well as machine-learning-aided techniques, have paved a path for realization of complex concentrated systems with deterministic short-range order, and provide a foundation on which these alloys and materials can be developed for various applications in functional, structural, and biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data will be shared according to guidelines from federal sponsors, and within those guidelines, are available on request.

References

  1. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017). https://doi.org/10.1016/J.ACTAMAT.2016.08.081

    Article  CAS  Google Scholar 

  2. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6, 74 (2004). https://doi.org/10.1002/ADEM.200300507

    Article  CAS  Google Scholar 

  3. M. Liu, A. Aiello, Y. Xie, K. Sieradzki, J. Electrochem. Soc. 165, C830 (2018). https://doi.org/10.1149/2.0871811JES/XML

    Article  CAS  Google Scholar 

  4. K. Inoue, S. Yoshida, N. Tsuji, Phys. Rev. Mater. 5, 085007 (2021). https://doi.org/10.1103/PHYSREVMATERIALS.5.085007/FIGURES/5/MEDIUM

    Article  CAS  Google Scholar 

  5. J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. U.S.A. 115, 8919 (2018). https://doi.org/10.1073/PNAS.1808660115/SUPPL_FILE/PNAS.1808660115.SAPP.PDF

    Article  CAS  Google Scholar 

  6. Y. Xie, D.M. Artymowicz, P.P. Lopes, A. Aiello, D. Wang, J.L. Hart, E. Anber, M.L. Taheri, H. Zhuang, R.C. Newman, K. Sieradzki, Nat. Mater. 20, 789 (2021). https://doi.org/10.1038/s41563-021-00920-9

    Article  CAS  Google Scholar 

  7. N.R. Tailleart, R. Huang, T. Aburada, D.J. Horton, J.R. Scully, Corros. Sci. 59, 238 (2012). https://doi.org/10.1016/J.CORSCI.2012.03.012

    Article  CAS  Google Scholar 

  8. Y. Xiong, Y. Yang, H. Joress, E. Padgett, U. Gupta, V. Yarlagadda, D.N. Agyeman-Budu, X. Huang, T.E. Moylan, R. Zeng, A. Kongkanand, F.A. Escobedo, J.D. Brock, F.J. DiSalvo, D.A. Muller, H.D. Abruña, Proc. Natl. Acad. Sci. U.S.A116, 1974 (2019). https://doi.org/10.1073/PNAS.1815643116/SUPPL_FILE/PNAS.1815643116.SM04.GIF

    Article  CAS  Google Scholar 

  9. S. Chen, T. Wang, X. Li, Y. Cheng, G. Zhang, H. Gao, Acta Mater. 238, 118201 (2022). https://doi.org/10.1016/J.ACTAMAT.2022.118201

    Article  CAS  Google Scholar 

  10. Z. Lyu, X. Fan, C. Lee, S.-Y. Wang, R. Feng, P.K. Liaw, J. Mater. Res. 33, 2998 (2018). https://doi.org/10.1557/jmr.2018.273

    Article  CAS  Google Scholar 

  11. W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci. 118, 100777 (2021). https://doi.org/10.1016/j.pmatsci.2021.100777

    Article  CAS  Google Scholar 

  12. Z. Wu, M.C. Troparevsky, Y.F. Gao, J.R. Morris, G.M. Stocks, H. Bei, Curr. Opin. Solid State Mater. Sci. 21, 267 (2017). https://doi.org/10.1016/j.cossms.2017.07.001

    Article  CAS  Google Scholar 

  13. Y. Shang, J. Brechtl, C. Pistidda, P.K. Liaw, High-Entropy Materials: Theory, Experiments, and Applications (Springer, Cham, 2021), p. 435

    Book  Google Scholar 

  14. O.N. Senkov, G.B. Wilks, J.M. Scott, D.M. Miracle, Intermetallics 19, 698 (2011). https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

  15. Y. Wu, F. Zhang, X. Yuan, H. Huang, X. Wen, Y. Wang, M. Zhang, H. Wu, X. Liu, H. Wang, J. Mater. Sci. Technol. 62, 214 (2021). https://doi.org/10.1016/j.jmst.2020.06.018

    Article  CAS  Google Scholar 

  16. H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe, Entropy (Basel) 18, 321 (2016). https://doi.org/10.3390/e18090321

    Article  CAS  Google Scholar 

  17. C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, Acta Mater. 160, 158 (2018). https://doi.org/10.1016/j.actamat.2018.08.053

    Article  CAS  Google Scholar 

  18. L.R. Owen, N.G. Jones, J. Mater. Res. 33, 2954 (2018). https://doi.org/10.1557/jmr.2018.322

    Article  CAS  Google Scholar 

  19. Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34, 349 (2018). https://doi.org/10.1016/j.jmst.2017.07.013

    Article  CAS  Google Scholar 

  20. Q. He, Y. Yang, Front. Mater. 5, 42 (2018). https://doi.org/10.3389/fmats.2018.00042

    Article  Google Scholar 

  21. H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Phys. Rev. Mater. 1, 23404 (2017). https://doi.org/10.1103/PhysRevMaterials.1.023404

    Article  Google Scholar 

  22. J. Xiao, N. Wu, O. Ojo, C. Deng, Materialia 12, 100749 (2020). https://doi.org/10.1016/j.mtla.2020.100749

    Article  CAS  Google Scholar 

  23. S.-P. Wang, J. Xu, J. Mater. Sci. Technol. 35, 812 (2019). https://doi.org/10.1016/j.jmst.2018.11.014

    Article  CAS  Google Scholar 

  24. Y.X. Ye, Z.P. Lu, T.G. Nieh, Scr. Mater. 130, 64 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.019

    Article  CAS  Google Scholar 

  25. C. Zhu, Z.P. Lu, T.G. Nieh, Acta Mater. 61, 2993 (2013). https://doi.org/10.1016/j.actamat.2013.01.059

    Article  CAS  Google Scholar 

  26. D. Utt, S. Lee, Y. Xing, H. Jeong, A. Stukowski, S.H. Oh, G. Dehm, K. Able, Nat. Commun. 13, 4777 (2022). https://doi.org/10.1038/s41467-022-32134-1

    Article  CAS  Google Scholar 

  27. L. Zhang, Y. Xiang, J. Han, D.J. Srolovitz, Acta Mater. 166, 424 (2019). https://doi.org/10.1016/j.actamat.2018.12.032

    Article  CAS  Google Scholar 

  28. D.L. Foley, S.H. Huang, E. Anber, L. Shanahan, Y. Shen, A.C. Lang, C.M. Barr, D. Spearot, L. Lamberson, M.L. Taheri, Acta Mater. 200, 1 (2020). https://doi.org/10.1016/j.actamat.2020.08.047

    Article  CAS  Google Scholar 

  29. T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. Mccomb, E.P. George, M. Ghazisaeidi, M.J. Mills, Acta Mater. 110, 352 (2016). https://doi.org/10.1016/j.actamat.2016.03.045

    Article  CAS  Google Scholar 

  30. W.-R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, I.J. Beyerlein, Acta Mater. 199, 352 (2020). https://doi.org/10.1016/j.actamat.2020.08.044

    Article  CAS  Google Scholar 

  31. Z. Xie, W.-R. Jian, S. Xu, I.J. Beyerlein, X. Zhang, Z. Wang, X. Yao, Acta Mater. 221, 117380 (2021). https://doi.org/10.1016/j.actamat.2021.117380

    Article  CAS  Google Scholar 

  32. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, Nature 581, 283 (2020). https://doi.org/10.1038/s41586-020-2275-z

    Article  CAS  Google Scholar 

  33. M. Zhang, Q. Yu, C. Frey, F. Walsh, M.I. Payne, P. Kumar, D. Liu, T.M. Pollock, M.D. Asta, R.O. Ritchie, Acta Mater. 241, 118380 (2022). https://doi.org/10.1016/j.actamat.2022.118380

    Article  CAS  Google Scholar 

  34. D. Sur, E.F. Holcombe, W.H. Blades, E.A. Anber, D.L. Foley, B.L. DeCost, J. Liu, J. Hattrick-Simpers, K. Sieradzki, H. Joress, J.R. Scully, M.L. Taheri, High throughput discovery of lightweight corrosion-resistant compositionally complex alloys (2023), Preprint, https://doi.org/10.48550/arXiv.2302.07988

  35. B.S. Murty, J.W. Yeh, S. Ranganathan, “Functional Properties,” in High Entropy Alloys (Elsevier, London, 2014), chap. 9, p. 149. https://doi.org/10.1016/B978-0-12-800251-3.00009-2

  36. T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Intermetallics 100, 1 (2018). https://doi.org/10.1016/J.INTERMET.2018.05.014

    Article  CAS  Google Scholar 

  37. M. Kurniawan, A. Perrin, P. Xu, V. Keylin, M. McHenry, IEEE Magn. Lett. 7, 6105005 (2016). https://doi.org/10.1109/LMAG.2016.2592462

    Article  Google Scholar 

  38. A. Perrin, M. Sorescu, M.T. Burton, D.E. Laughlin, M. McHenry, JOM 69, 2125 (2017). https://doi.org/10.1007/S11837-017-2523-3/TABLES/1

    Article  CAS  Google Scholar 

  39. L. Liu, S. Huang, L. Vitos, M. Dong, E. Bykova, D. Zhang, B.S.G. Almqvist, S. Ivanov, J.E. Rubensson, B. Varga, L.K. Varga, P. Lazor, Commun. Phys. 2, 1 (2019). https://doi.org/10.1038/s42005-019-0141-9

    Article  CAS  Google Scholar 

  40. K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, H. Sukegawa, S. Mitani, A. Hirohata, Sci. Technol. Adv. Mater. 22, 235 (2021). https://doi.org/10.1080/14686996.2020.1812364

    Article  CAS  Google Scholar 

  41. C. Bazioti, O.M. Løvvik, A. Poulia, P.A. Carvalho, A.S. Azar, P. Mikheenko, S. Diplas, A.E. Gunnæs, J. Alloys Compd. 910, 164724 (2022). https://doi.org/10.1016/J.JALLCOM.2022.164724

    Article  CAS  Google Scholar 

  42. A. Çakır, A. Mehmet, M. Farle, High Entropy Alloys Mater. 1, 1 (2023). https://doi.org/10.1007/S44210-023-00012-0

    Article  Google Scholar 

  43. K. Xia, P. Nan, S. Tan, Y. Wang, B. Ge, W. Zhang, S. Anand, X. Zhao, J. Snyder, T. Zhu, Energy Environ. Sci. 12(5), 1568 (2019). https://doi.org/10.1039/C8EE03654C

    Article  CAS  Google Scholar 

  44. M.A. Krivoglaz, A.A. Smirnov, The Theory of Order-Disorder in Alloys [Translation from Russian] (MacDonald and Co. Ltd, London, 1964)

    Google Scholar 

  45. P.C. Clapp, S.C. Moss, Phys. Rev. 171, 754 (1968). https://doi.org/10.1103/PhysRev.171.754

    Article  CAS  Google Scholar 

  46. T. Mohri, J.M. Sanchez, D. de Fontaine, Acta Metall. 33, 1171 (1985)

    Article  CAS  Google Scholar 

  47. W. Schweika, A.E. Carlsson, Phys. Rev. B 40, 4990 (1989). https://doi.org/10.1103/PhysRevB.40.4990

    Article  CAS  Google Scholar 

  48. S. Kadkhodaei, J.A. Muñoz, JOM 73, 3326 (2021). https://doi.org/10.1007/S11837-021-04840-6

    Article  Google Scholar 

  49. V. Ozoliņš, C. Wolverton, A. Zunger, Phys. Rev. B 57, 6427 (1998). https://doi.org/10.1103/PhysRevB.57.6427

    Article  Google Scholar 

  50. Z.W. Lu, D.B. Laks, S.H. Wei, A. Zunger, Phys. Rev. B 50, 6642 (1994). https://doi.org/10.1103/PhysRevB.50.6642

    Article  CAS  Google Scholar 

  51. G. Ghosh, A. van de Walle, M. Asta, Acta Mater. 56, 3202 (2008). https://doi.org/10.1016/J.ACTAMAT.2008.03.006

    Article  CAS  Google Scholar 

  52. C. Wolverton, V. Ozoli, A. Zunger, J. Phys. 12, 2749 (2000). https://doi.org/10.1088/0953-8984/12/12/314

    Article  CAS  Google Scholar 

  53. C. Wolverton, A. Zunger, Phys. Rev. B 52, 8813 (1995). https://doi.org/10.1103/PhysRevB.52.8813

    Article  CAS  Google Scholar 

  54. A. Fernández-Caballero, J.S. Wróbel, P.M. Mummery, D. Nguyen-Manh, J. Phase Equilib. Diffus. 38, 391 (2017). https://doi.org/10.1007/S11669-017-0582-3/FIGURES/8

    Article  Google Scholar 

  55. X.-G. Li, C. Chen, H. Zheng, Y. Zuo, S.P. Ong, NPJ Comput. Mater. 6, 70 (2020). https://doi.org/10.1038/s41524-020-0339-0

    Article  CAS  Google Scholar 

  56. S. Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X.-G. Li, J. Ding, S.P. Ong, M. Asta, R.O. Ritchie, Nat. Commun. 12, 4873 (2021). https://doi.org/10.1038/s41467-021-25134-0

    Article  CAS  Google Scholar 

  57. P. Singh, A.V. Smirnov, D.D. Johnson, Phys. Rev. B 91, 224204 (2015). https://doi.org/10.1103/PHYSREVB.91.224204/FIGURES/9/MEDIUM

    Article  Google Scholar 

  58. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Phys. Rev. X 5, 011041 (2015). https://doi.org/10.1103/PHYSREVX.5.011041/FIGURES/2/MEDIUM

    Article  Google Scholar 

  59. J.W. Cahn, Acta Metall. 9, 795 (1961). https://doi.org/10.1016/0001-6160(61)90182-1

    Article  CAS  Google Scholar 

  60. J.W. Cahn, Acta Metall. 10, 179 (1962). https://doi.org/10.1016/0001-6160(62)90114-1

    Article  CAS  Google Scholar 

  61. G. Grimvall, B. Magyari-Köpe, E.N.M. Ozoliņ, K.A. Persson, Rev. Mod. Phys. 84, 945 (2012). https://doi.org/10.1103/REVMODPHYS.84.945/FIGURES/50/MEDIUM

    Article  CAS  Google Scholar 

  62. D. de Fontaine, J. Appl. Crystallogr. 4(1), 15 (1971). https://doi.org/10.1107/S0021889871006174

    Article  Google Scholar 

  63. W.H. Blades, B.W.Y. Redemann, N.C. Smith, D. Sur, M.R. Barbieri, Y. Xie, S. Lech, E. Anber, M. Taheri, C. Wolverton, T.M. McQueen, J.R. Scully, K. Sieradzki, Science (submitted) (2023).

  64. M.J. Waters, J.M. Rondinelli, J. Phys. 33, 445901 (2021). https://doi.org/10.1088/1361-648X/AC1AF0

    Article  CAS  Google Scholar 

  65. S. Calvin, XAFS for Everyone (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  66. V. Krayzman, I. Levin, J.C. Woicik, T. Proffen, T.A. Vanderah, M.G. Tucker, J. Appl. Crystallogr. 42(5), 867 (2009). https://doi.org/10.1107/S0021889809023541

    Article  CAS  Google Scholar 

  67. J.L. Hart, A.C. Lang, Y. Li, S. Shahrezaei, D.D. Alix-Williams, M.L. Falk, S.N. Mathaudhu, A.I. Frenkel, M.L. Taheri, Mater. Today Nano 21, 100298 (2023). https://doi.org/10.1016/J.MTNANO.2022.100298

    Article  CAS  Google Scholar 

  68. J.L. Hart, A.C. Lang, A.C. Leff, P. Longo, C. Trevor, R.D. Twesten, M.L. Taheri, Sci. Rep. 7, 8243 (2017). https://doi.org/10.1038/s41598-017-07709-4

    Article  CAS  Google Scholar 

  69. M. Newville, P. Liviņ, Y. Yacoby, J.J. Rehr, E.A. Stern, Phys. Rev. B 47, 14126 (1993). https://doi.org/10.1103/PhysRevB.47.14126

    Article  CAS  Google Scholar 

  70. S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Phys. Rev. B 52, 2995 (1995). https://doi.org/10.1103/PhysRevB.52.2995

    Article  CAS  Google Scholar 

  71. M. Qian, M. Sarikaya, E.A. Stern, Ultramicroscopy 59, 137 (1995). https://doi.org/10.1016/0304-3991(95)00024-U

    Article  CAS  Google Scholar 

  72. R.L. McGreevy, J. Phys. 13, R877 (2001). https://doi.org/10.1088/0953-8984/13/46/201

    Article  CAS  Google Scholar 

  73. A. Di Cicco, F. Iesari, Phys. Chem. Chem. Phys. 24, 6988 (2022). https://doi.org/10.1039/D1CP05525A

    Article  Google Scholar 

  74. H. Joress, M.L. Green, I. Takeuchi, J.R. Hattrick-Simpers, “Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Structural, and Energy-Related Materials,” in Encyclopedia of Materials: Metals and Alloys (Elsevier, 2022), vol. 2, p. 353. https://doi.org/10.1016/B978-0-12-819726-4.00146-0

  75. H. Joress, B. Ravel, E. Anber, J. Hollenbach, D. Sur, J. Hattrick-Simpers, M.L. Taheri, B. DeCost, Why is EXAFS analysis for multicomponent metals so hard? Challenges and opportunities for measuring ordering in complex concentrated alloys using x-ray absorption spectroscopy (2023), Preprint, https://doi.org/10.48550/arXiv.2303.09539

  76. R.K.W. Marceau, A.V. Ceguerra, A.J. Breen, D. Raabe, S.P. Ringer, Ultramicroscopy 157, 12 (2015). https://doi.org/10.1016/J.ULTRAMIC.2015.05.001

    Article  CAS  Google Scholar 

  77. A.V. Ceguerra, M.P. Moody, R.C. Powles, T.C. Petersen, R.K.W. Marceau, S.P. Ringer, Acta Crystallogr. Sect. A 68, 547 (2012). https://doi.org/10.1107/S0108767312025706

    Article  CAS  Google Scholar 

  78. A.V. Ceguerra, R.C. Powles, M.P. Moody, S.P. Ringer, Phys. Rev. B 82, 132201 (2010). https://doi.org/10.1103/PHYSREVB.82.132201/FIGURES/3/MEDIUM

    Article  Google Scholar 

  79. Y. Qiu, Y.J. Hu, A. Taylor, M.J. Styles, R.K.W. Marceau, A.V. Ceguerra, M.A. Gibson, Z.K. Liu, H.L. Fraser, N. Birbilis, Acta Mater. 123, 115 (2017). https://doi.org/10.1016/J.ACTAMAT.2016.10.037

    Article  CAS  Google Scholar 

  80. T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2nd edn. (Elsevier, Amsterdam, 2012)

    Google Scholar 

  81. A.M.M. Abeykoon, C.D. Malliakas, P. Juhás, E.S. Božin, M.G. Kanatzidis, S.J.L. Billinge, Z. Kristallogr. 227, 248 (2012). https://doi.org/10.1524/ZKRI.2012.1510

    Article  CAS  Google Scholar 

  82. T.E. Gorelik, M.U. Schmidt, U. Kolb, S.J.L. Billinge, Microsc. Microanal. 21, 459 (2015). https://doi.org/10.1017/S1431927614014561

    Article  CAS  Google Scholar 

  83. X. Mu, D. Wang, T. Feng, C. Kübel, Ultramicroscopy 168, 1 (2016). https://doi.org/10.1016/J.ULTRAMIC.2016.05.009

    Article  CAS  Google Scholar 

  84. M.M. Hoque, S. Vergara, P.P. Das, D. Ugarte, U. Santiago, C. Kumara, R.L. Whetten, A. Dass, A. Ponce, J. Phys. Chem. C 123, 19894 (2019). https://doi.org/10.1021/ACS.JPCC.9B02901

    Article  CAS  Google Scholar 

  85. X. Mu, L. Chen, R. Mikut, H. Hahn, C. Kübel, Acta Mater. 212, 116932 (2021). https://doi.org/10.1016/J.ACTAMAT.2021.116932

    Article  CAS  Google Scholar 

  86. B.H. Savitzky, S.E. Zeltmann, L.A. Hughes, H.G. Brown, S. Zhao, P.M. Pelz, T.C. Pekin, E.S. Barnard, J. Donohue, L. Rangel Dacosta, E. Kennedy, Y. Xie, M.T. Janish, M.M. Schneider, P. Herring, C. Gopal, A. Anapolsky, R. Dhall, K.C. Bustillo, P. Ercius, M.C. Scott, J. Ciston, A.M. Minor, C. Ophus, Microsc. Microanal. 27, 712 (2021). https://doi.org/10.1017/S1431927621000477

    Article  CAS  Google Scholar 

  87. Y. Rakita, J.L. Hart, P.P. Das, S. Shahrezaei, D.L. Foley, S.N. Mathaudhu, S. Nicolopoulos, M.L. Taheri, S.J.L. Billinge, Acta Mater. 242, 118426 (2023). https://doi.org/10.1016/J.ACTAMAT.2022.118426

    Article  CAS  Google Scholar 

  88. W. Guo, W. Dmowski, J.-Y. Noh, P. Rack, P.K. Liaw, T. Egami, Metall. Mater. Trans. A 44, 1994 (2013). https://doi.org/10.1007/s11661-012-1474-0

    Article  CAS  Google Scholar 

  89. L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, Acta Mater. 122, 11 (2017). https://doi.org/10.1016/j.actamat.2016.09.032

    Article  CAS  Google Scholar 

  90. F. Zhang, Y. Tong, K. Jin, H. Bei, W.J. Weber, A. Huq, A. Lanzirotti, M. Newville, D.C. Pagan, J.Y.P. Ko, Mater. Res. Lett. 6, 450 (2018). https://doi.org/10.1080/21663831.2018.1478332

    Article  CAS  Google Scholar 

  91. P. Thirathipviwat, S. Sato, G. Song, J. Bednarcik, K. Nielsch, J. Jung, J. Han, Scr. Mater. 210, 114470 (2022). https://doi.org/10.1016/j.scriptamat.2021.114470

    Article  CAS  Google Scholar 

  92. Y.-Y. Tan, T. Li, Y. Chen, Z.-J. Chen, M.-Y. Su, J. Zhang, Y. Gong, T. Wu, H.-Y. Wang, L.-H. Dai, Scr. Mater. 223, 115079 (2023). https://doi.org/10.1016/j.scriptamat.2022.115079

    Article  CAS  Google Scholar 

  93. R. de Ridder, G. van Tendeloo, S. Amelinckx, Acta Crystallogr. Sect. A 32(2), 216 (1976). https://doi.org/10.1107/S0567739476000508

    Article  Google Scholar 

  94. J.M. Cowley, R.J. Murray, Acta Crystallogr. Sect. A 24, 329 (1968). https://doi.org/10.1107/S0567739468000653

    Article  CAS  Google Scholar 

  95. K. Ohshima, D. Watanabe, Acta Crystallogr. Sect. A 29, 520 (1973). https://doi.org/10.1107/S0567739473001300

    Article  CAS  Google Scholar 

  96. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Nature 581, 283 (2020). https://doi.org/10.1038/s41586-020-2275-z

    Article  CAS  Google Scholar 

  97. L. Zhou, Q. Wang, J. Wang, X. Chen, P. Jiang, H. Zhou, F. Yuan, X. Wu, Z. Cheng, E. Ma, Acta Mater. 224, 117490 (2022). https://doi.org/10.1016/j.actamat.2021.117490

    Article  CAS  Google Scholar 

  98. P.A. Midgley, A.S. Eggeman, IUCrJ 2, 126 (2015). https://doi.org/10.1107/S2052252514022283

    Article  CAS  Google Scholar 

  99. H.-W. Hsiao, R. Feng, H. Ni, K. An, J.D. Poplawsky, P.K. Liaw, J.-M. Zuo, Nat. Commun. 13, 6651 (2022). https://doi.org/10.1038/s41467-022-34335-0

    Article  CAS  Google Scholar 

  100. H. Joress, B.L. DeCost, S. Sarker, T.M. Braun, S. Jilani, R. Smith, L. Ward, K.J. Laws, A. Mehta, J.R. Hattrick-Simpers, ACS Comb. Sci. 22(7), 330 (2020). https://doi.org/10.1021/ACSCOMBSCI.9B00215

    Article  CAS  Google Scholar 

  101. K.S. Vecchio, O.F. Dippo, K.R. Kaufmann, X. Liu, Acta Mater. 221, 117352 (2021). https://doi.org/10.1016/J.ACTAMAT.2021.117352

    Article  CAS  Google Scholar 

  102. M. Abolhasani, K.A. Brown, MRS Bull. 48(2), 134 (2023). https://doi.org/10.1557/s43577-023-00482-y

    Article  Google Scholar 

  103. B.P. MacLeod, F.G.L. Parlane, C.P. Berlinguette, MRS Bull. 48(2), 173 (2023). https://doi.org/10.1557/S43577-023-00476-W

    Article  Google Scholar 

  104. Z. Li, W.T. Nash, S.P. O’Brien, Y. Qiu, R.K. Gupta, N. Birbilis, J. Mater. Sci. Technol. 125, 81 (2022). https://doi.org/10.1016/J.JMST.2022.03.008

    Article  CAS  Google Scholar 

  105. A. Nouira, N. Sokolovska, J.-C. Crivello, CrystalGAN: Learning to discover crystallographic structures with generative adversarial networks (2018), Preprint, https://doi.org/10.48550/arXiv.1810.11203

  106. V. Attari, R. Arroyave, Mater. Theory 6, 5 (2022). https://doi.org/10.1186/S41313-021-00038-0

    Article  Google Scholar 

Download references

Acknowledgments

N/A.

Funding

M.L.T., J.H., N.S., C.W., J.R., M.W., and G.L. gratefully acknowledge funding in part from the Office of Naval Research (ONR) through the Multidisciplinary University Research Initiative (MURI) program (Award  No. N00014-20-1-2368) with program managers D. Shifler and W. Nickerson. M.L.T., D.L.F., and Y.R. also acknowledge funding in part from ONR through Award No. N00014-20-1-2788 with program manager W. Mullins. M.L.T, A.B., and E.A. acknowledge funding in part from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences through Award No. DE-SC0020314 with program manager J. Vetrano. S.B and Y.R. acknowledge funding from the Next Generation Synthesis Center (GENESIS), an Energy Frontier Research Center funded by the DOE,  Office of Science, Basic Energy Sciences (Award No. DE-SC0019212).

Author information

Authors and Affiliations

Authors

Contributions

M.L.T. conceived of the article and all authors contributed to writing and editing.

Corresponding author

Correspondence to Mitra L. Taheri.

Ethics declarations

Conflict of interest

The authors do not possess any conflicts of interest.

Ethical approval

All authors consent and approve.

Consent for publication

All authors consent to publication.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M.L., Anber, E., Barnett, A. et al. Understanding and leveraging short-range order in compositionally complex alloys. MRS Bulletin 48, 1280–1291 (2023). https://doi.org/10.1557/s43577-023-00591-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00591-8

Keywords

Navigation