Skip to main content
Log in

Unconventional direct ink writing of polyelectrolyte films

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article focuses on fundamentally analyzing the morphology of polyelectrolyte-based layer-by-layer (LbL) films, created using an unconventional direct ink writing (u-DIW) approach that allows printing low-viscosity inks via capillary action. With two oppositely charged weak polyelectrolytes as inks and using a range of characterization techniques, we have compared the films developed using this new approach against traditional dip-coating in terms of their key morphological features. Our results suggest that the extent of polyelectrolyte interdiffusion within the films is limited in the case of the u-DIW approach causing the formation of thinner films versus dip-coating. In comparison to traditional dip-coating, u-DIW has the advantage of enabling the formation of homogenous films with equivalent properties, but with significantly lower material usage. The fundamental analyses presented in this article will likely facilitate the application of LbL in various fields ranging from separations to biomedical drug delivery.

Impact statement

There is currently a burgeoning interest to develop the next generation of large-scale thin-film advanced manufacturing for a myriad of applications, including energy and biomedical fields. Direct ink writing (DIW) can be a transformative deposition method in that it does not necessitate the need for masking, offers large-scale manufacturing capabilities, and uses relatively little ink volume (e.g., compared to a dip-coating process) with no material waste. Although DIW is a well-known method in the additive manufacturing community, currently it is largely limited to highly viscous, non-Newtonian ink printing and 3D lattice fabrication, thus not allowing thin-film fabrication. Recently, through our work, the capability of low-viscosity inks to be directly written into thin films (with textured surfaces) without the use of external stimuli and/or pneumatic pressure has been demonstrated. This is possible by only using surface forces to deposit the solution-based ink onto a substrate in the form of a thin film.

In this work, this unconventional DIW approach is used to deposit thin films comprising alternating layers of oppositely charged polyelectrolytes and compare them to samples made using a traditional dip-coating method. Using a range of characterization techniques, we demonstrate, for the first time, that our novel direct writing method can be used interchangeably with traditional manufacturing methods. We further show the application of this method as a membrane surface modification technique where equivalent separation properties were achieved as dip-coated membranes with ~10× lower solvent (water) usage. Beyond membranes, we believe this technique may hold the key for successfully fabricating thin films for various other applications, including drug delivery and sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data from this study are available from the corresponding authors upon reasonable request.

References

  1. C. Sung, Y. Heo, Polymers 13(13), 2116 (2021)

    Article  CAS  Google Scholar 

  2. S.J. Percival, L.J. Small, E.D. Spoerke, S.B. Rempe, RSC Adv. 8(57), 32992 (2018)

    Article  CAS  Google Scholar 

  3. Y. Guo, W. Geng, J. Sun, Langmuir 25(2), 1004 (2009)

    Article  CAS  Google Scholar 

  4. S.J. Yeo, H. Kang, Y.H. Kim, S. Han, P.J. Yoo, ACS Appl. Mater. Interfaces 4(4), 2107 (2012)

    Article  CAS  Google Scholar 

  5. P. Arribas, M. Khayet, M. García-Payo, L. Gil, Sep. Purif. Technol. 138, 118 (2014)

    Article  CAS  Google Scholar 

  6. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63(15), 2223 (2003)

    Article  CAS  Google Scholar 

  7. W.E. Teo, S. Ramakrishna, Nanotechnology 17(14), R89 (2006)

    Article  CAS  Google Scholar 

  8. C. Zhang, Y. Li, P. Wang, H. Zhang, Compr. Rev. Food Sci. Food Saf. 19(2), 479 (2020)

    Article  CAS  Google Scholar 

  9. T. Anokhina, I. Borisov, A. Yushkin, G. Vaganov, A. Didenko, A. Volkov, Polymers 12(12), 2785 (2020)

    Article  CAS  Google Scholar 

  10. C.B. Urducea, A.C. Nechifor, I.A. Dimulescu, O. Oprea, G. Nechifor, E.E. Totu, I. Isildak, P.C. Albu, S.G. Bungău, Nanomaterials 10(12), 2349 (2020)

    Article  CAS  Google Scholar 

  11. O. Cuscito, M.-C. Clochard, S. Esnouf, N. Betz, D. Lairez, Nucl. Instrum. Methods Phys. Res. B 265(1), 309 (2007)

    Article  CAS  Google Scholar 

  12. M. Grasselli, N. Betz, Nuclear Instrum. Methods Phys. Res. B 236(1–4), 201 (2005)

    Article  CAS  Google Scholar 

  13. P. Martínez-Pérez, J. García-Rupérez, Beilstein J. Nanotechnol. 10, 677 (2019)

    Article  Google Scholar 

  14. I.V. Korolkov, Y.G. Gorin, A.B. Yeszhanov, A.L. Kozlovskiy, M.V. Zdorovets, Mater. Chem. Phys. 205, 55 (2018)

    Article  CAS  Google Scholar 

  15. Z. Dong, H. Cui, H. Zhang, F. Wang, X. Zhan, F. Mayer, B. Nestler, M. Wegener, P.A. Levkin, Nat. Commun. 12(1), 5052 (2021)

    Article  CAS  Google Scholar 

  16. Z.-X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe, J. Memb. Sci. 523, 596 (2017)

    Article  CAS  Google Scholar 

  17. H. Yu, X. Qiu, S.P. Nunes, K.-V. Peinemann, Nat. Commun. 5, 4110 (2014)

    Article  CAS  Google Scholar 

  18. G.-R. Xu, S.-H. Wang, H.-L. Zhao, S.-B. Wu, J.-M. Xu, L. Li, X.-Y. Liu, J. Memb. Sci. 493, 428 (2015)

    Article  CAS  Google Scholar 

  19. J. Yu, O. Sanyal, A.P. Izbicki, I. Lee, Macromol. Rapid Commun. 36(18), 1669 (2015)

    Article  CAS  Google Scholar 

  20. J. Yu, S. Han, J.S. Hong, O. Sanyal, I. Lee, Langmuir 32(33), 8494 (2016)

    Article  CAS  Google Scholar 

  21. K.S. Piash, R. Anwar, C. Shingleton, R. Erwin, L.-S. Lin, O. Sanyal, AIChE J. 68(12), e17869 (2022)

    Article  CAS  Google Scholar 

  22. J. Choi, M.F. Rubner, Macromolecules 38(1), 116 (2005)

    Article  CAS  Google Scholar 

  23. O. Sanyal, Z. Liu, B.M. Meharg, W. Liao, I. Lee, J. Memb. Sci. 496, 259 (2015)

    Article  CAS  Google Scholar 

  24. X. Chen, J. Sun, Chem. Asian J. 9(8), 2063 (2014)

    Article  CAS  Google Scholar 

  25. S.Q. Arlington, S.V. Lakshman, S.C. Barron, J.B. DeLisio, J.C. Rodriguez, S. Narayanan, G.M. Fritz, T.P. Weihs, Mater. Adv. 1(5), 1151 (2020)

    Article  CAS  Google Scholar 

  26. M.A. Skylar-Scott, S. Gunasekaran, J.A. Lewis, Proc. Natl. Acad. Sci. U.S.A. 113, 6137 (2016)

    Article  CAS  Google Scholar 

  27. S. Lee, J.H. Kim, M. Wajahat, H. Jeong, W.S. Chang, S.H. Cho, J.T. Kim, S.K. Seol, ACS Appl. Mater. Interfaces 9(22), 18918 (2017)

    Article  CAS  Google Scholar 

  28. Y. Zhang, G. Shi, J. Qin, S.E. Lowe, S. Zhang, H. Zhao, Y.L. Zhong, ACS Appl. Electron. Mater. 1(9), 1718 (2019)

    Article  CAS  Google Scholar 

  29. L. Siebert, N. Wolff, N. Ababii, M.-I. Terasa, O. Lupan, A. Vahl, V. Duppel, H. Qiu, M. Tienken, M. Mirabelli, V. Sontea, F. Faupel, L. Kienle, R. Adelung, Nano Energy 70, 104420 (2020)

    Article  CAS  Google Scholar 

  30. Y.-Y. Li, L.-T. Li, B. Li, Mod. Phys. Lett. B 30(11), 1650212 (2016)

    Article  Google Scholar 

  31. M.A. Torres Arango, O.A. Abidakun, D. Korakakis, K.A. Sierros, Flex. Print. Electron. 2(3), 035006 (2017)

    Article  Google Scholar 

  32. M.A. Torres Arango, D. Kwakye-Ackah, S. Agarwal, R.K. Gupta, K.A. Sierros, A.C.S. Sustain, Chem. Eng. 5(11), 10421 (2017)

    CAS  Google Scholar 

  33. A.J. Blake, R.R. Kohlmeyer, J.O. Hardin, E.A. Carmona, B. Maruyama, J.D. Berrigan, H. Huang, M.F. Durstock, Adv. Energy Mater. 7(14), 1602920 (2017)

    Article  Google Scholar 

  34. B.Y. Ahn, D.J. Lorang, E.B. Duoss, J.A. Lewis, Chem. Commun. 46(38), 7118 (2010)

    Article  CAS  Google Scholar 

  35. J.A. Lewis, J.E. Smay, J. Stuecker, J. Cesarano III, J. Am. Ceram. Soc. 89(12), 3599 (2006)

    Article  CAS  Google Scholar 

  36. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Nat. Mater. 15(4), 413 (2016)

    Article  Google Scholar 

  37. S.-I. Roohani-Esfahani, P. Newman, H. Zreiqat, Sci. Rep. 6, 19468 (2016)

    Article  CAS  Google Scholar 

  38. H. Baniasadi, R. Ajdary, J. Trifol, O.J. Rojas, J. Seppälä, Carbohydr. Polym. 266, 118114 (2021)

    Article  CAS  Google Scholar 

  39. F.R. Gleuwitz, G. Sivasankarapillai, G. Siqueira, C. Friedrich, M.P.G. Laborie, ACS Appl. Bio Mater. 3, 6049 (2020)

    Article  CAS  Google Scholar 

  40. S. Tagliaferri, A. Panagiotopoulos, C. Mattevi, Mater. Adv. 2, 540 (2021)

    Article  CAS  Google Scholar 

  41. K. Sun, T.-S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, Adv. Mater. 25(33), 4539 (2013)

    Article  CAS  Google Scholar 

  42. T. Ching, Y. Li, R. Karyappa, A. Ohno, Y.-C. Toh, M. Hashimoto, Sens. Actuators B Chem. 297, 126609 (2019)

    Article  CAS  Google Scholar 

  43. X. Li, J.M. Zhang, X. Yi, Z. Huang, P. Lv, H. Duan, Adv. Sci. 6(3), 1800730 (2019)

    Article  Google Scholar 

  44. Y. Ma, L. Xie, B. Yang, W. Tian, Biotechnol. Bioeng. 116(2), 452 (2019)

    Article  CAS  Google Scholar 

  45. G. Palmara, F. Frascella, I. Roppolo, A. Chiappone, A. Chiadò, Biosens. Bioelectron. 175, 112849 (2021)

    Article  CAS  Google Scholar 

  46. G.J. Cordonier, K.A. Sierros, ACS Appl. Mater. Interfaces 12(13), 15875 (2020)

    Article  CAS  Google Scholar 

  47. S. Yang, S. Park, J. Bintinger, Y. Bonnassieux, J. Anthony, I. Kymissis, Adv. Electron. Mater. 4(6), 1700534 (2018)

    Article  Google Scholar 

  48. S. Yang, S. Park, J. Bintinger, Y. Bonnassieux, I. Kymissis, SID Int. Symp. Dig. Tech. Pap. 47(1), 1502 (2016)

    Article  CAS  Google Scholar 

  49. A. Shukla, K.E. Fleming, H.F. Chuang, T.M. Chau, C.R. Loose, G.N. Stephanopoulos, P.T. Hammond, Biomaterials 31(8), 2348 (2010)

    Article  CAS  Google Scholar 

  50. B.-S. Kim, S.W. Park, P.T. Hammond, ACS Nano 2(2), 386 (2008)

    Article  CAS  Google Scholar 

  51. K.C. Wood, J.Q. Boedicker, D.M. Lynn, P.T. Hammond, Langmuir 21(4), 1603 (2005)

    Article  CAS  Google Scholar 

  52. H. Ohara, S. Yamamoto, D. Kuzuhara, T. Koganezawa, H. Oikawa, M. Mitsuishi, ACS Appl. Mater. Interfaces 12(45), 50784 (2020)

    Article  CAS  Google Scholar 

  53. A.F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, M. Unser, Colloids Surf. A 364(1–3), 72 (2010)

    Article  CAS  Google Scholar 

  54. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671 (2012)

    Article  CAS  Google Scholar 

  55. J.L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)

    Article  CAS  Google Scholar 

  56. N.S. Zacharia, M. Modestino, P.T. Hammond, Macromolecules 40(26), 9523 (2007)

    Article  CAS  Google Scholar 

  57. M. Schönhoff, P. Bieker, Macromolecules 43(11), 5052 (2010)

    Article  Google Scholar 

  58. R. Chollakup, J.B. Beck, K. Dirnberger, M. Tirrell, C.D. Eisenbach, Macromolecules 46(6), 2376 (2013)

    Article  CAS  Google Scholar 

  59. Z.-X. Low, Q. Liu, E. Shamsaei, X. Zhang, H. Wang, Membranes 5(1), 136 (2015)

    Article  CAS  Google Scholar 

  60. B. Ma, W. Xue, Y. Bai, R. Liu, W. Chen, H. Liu, J. Qu, J. Memb. Sci. 596, 117732 (2020)

    Article  CAS  Google Scholar 

  61. N. Widjojo, T.S. Chung, M. Weber, C. Maletzko, V. Warzelhan, Chem. Eng. J. 220, 15 (2013)

    Article  CAS  Google Scholar 

  62. P. Kujawa, P. Moraille, J. Sanchez, A. Badia, F.M. Winnik, J. Am. Chem. Soc. 127(25), 9224 (2005)

    Article  CAS  Google Scholar 

  63. C. Porcel, P. Lavalle, G. Decher, B. Senger, J.-C. Voegel, P. Schaaf, Langmuir 23(4), 1898 (2007)

    Article  CAS  Google Scholar 

  64. B. Sun, C.M. Jewell, N.J. Fredin, D.M. Lynn, Langmuir 23(16), 8452 (2007)

    Article  CAS  Google Scholar 

  65. W. Shan, P. Bacchin, P. Aimar, M.L. Bruening, V.V. Tarabara, J. Memb. Sci. 349, 268 (2010)

    Article  CAS  Google Scholar 

  66. L. Ouyang, R. Malaisamy, M.L. Bruening, J. Memb. Sci. 310(1–2), 76 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

O.S. acknowledges West Virginia University Research Corporation for startup funds. The authors acknowledge the use of the West Virginia University Shared Research Facilities for the use of SEM and AFM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oishi Sanyal or Konstantinos Sierros.

Ethics declarations

Conflict of interest

The authors declare no financial conflict.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 970 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordonier, G.J., Piash, K.S., Erwin, R. et al. Unconventional direct ink writing of polyelectrolyte films. MRS Bulletin 48, 720–729 (2023). https://doi.org/10.1557/s43577-022-00461-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00461-9

Keywords

Navigation