Skip to main content
Log in

Anharmonic quantum thermal transport across a van der Waals interface

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We investigate the anharmonic phonon scattering across a weakly interacting interface by developing a quantum mechanics-based theory. We find that the contribution from anharmonic three-phonon scatterings to interfacial thermal conductance can be cast into Landauer formula with transmission function being temperature-dependent. Surprisingly, in the weak coupling limit, the transmission due to anharmonic phonon scattering is unbounded with increasing temperature, which is physically impossible for two-phonon processes. We further reveal that the anharmonic contribution in a real heterogeneous interface (e.g., between graphene and monolayer molybdenum disulfide) can dominate over the harmonic process even at room temperature, highlighting the important role of anharmonicity in weakly interacting heterogeneous systems.

Impact statement

Two-dimensional (2D) van der Waals heterostructures that are built by vertically stacking different 2D materials not only serve as a new platform for exploring new materials physics, but also open up enormous possibilities for applications, such as in nanoelectronic and photonic devices. Because each layer in such heterostructures acts both as a bulk and an interface, this construct can have limited thermal transport across the layers, and yet our understanding on heat dissipation in such systems is still limited due to quantum effect and phononic anharmonicity. Here, we develop a quantum-mechanical theory to describe thermal conduction across such systems by considering interlayer phonon scatterings and placing both harmonic and anharmonic scattering under the same framework. We apply the theory to explore the thermal transport across different heterostructures and reveal the following findings: (1) The contribution of three-phonon processes can be cast into Landauer form with the transmission function being temperature-dependent. (2) The transmission of three-phonon processes is unbounded and increases linearly with temperature in the high temperature limit. (3) The anharmonic contribution in real heterostructures (e.g., graphene-MoS\(_2\)) can dominate over the harmonic contribution even at room temperature, highlighting the important role of anharmonicity in weakly interacting heterogeneous systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data will be made available on reasonable request.

References

  1. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353 (2016)

  3. K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Nat. Nanotechnol. 8, 826 (2013)

    Article  CAS  Google Scholar 

  4. A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, F.H.L. Koppens, Nat. Mater. 14, 421 (2015)

    Article  CAS  Google Scholar 

  5. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012)

    Article  CAS  Google Scholar 

  6. A. Azizi, S. Eichfeld, G. Geschwind, K. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A.F. Piasecki, B. Kabius, J.A. Robinson, N. Alem, ACS Nano 9, 4882 (2015)

    Article  CAS  Google Scholar 

  7. K. Chang, W. Chen, ACS Nano 5, 4720 (2011)

    Article  CAS  Google Scholar 

  8. L. David, R. Bhandavat, G. Singh, ACS Nano 8, 1759 (2014)

    Article  CAS  Google Scholar 

  9. H. Wang, D. Tran, J. Qian, F. Ding, D. Losic, Adv. Mater. Interfaces 6, 1900915 (2019)

    Article  CAS  Google Scholar 

  10. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 7296 (2011)

    Article  CAS  Google Scholar 

  11. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H.C. Neto, K.S. Novoselov, Science 340, 1311 (2013)

    Article  CAS  Google Scholar 

  12. B. Liu, F. Meng, C.D. Reddy, J.A. Baimova, N. Srikanth, S.V. Dmitriev, K. Zhou, RSC Adv. 5, 29193 (2015)

    Article  CAS  Google Scholar 

  13. Z. Ding, Q.-X. Pei, J.-W. Jiang, W. Huang, Y.-W. Zhang, Carbon 96, 888 (2016)

    Article  CAS  Google Scholar 

  14. K.-J. Tielrooij, N.C.H. Hesp, A. Principi, M.B. Lundeberg, E.A.A. Pogna, L. Banszerus, Z. Mics, M. Massicotte, P. Schmidt, D. Davydovskaya, D.G. Purdie, I. Goykhman, G. Soavi, A. Lombardo, K. Watanabe, T. Taniguchi, M. Bonn, D. Turchinovich, C. Stampfer, A.C. Ferrari, G. Cerullo, M. Polini, F.H.L. Koppens, Nat. Nanotechnol. 13, 41 (2018)

    Article  CAS  Google Scholar 

  15. M.S. Alborzi, A. Rajabpour, A. Montazeri, Int. J. Therm. Sci. 150, 106237 (2020)

  16. K. Gordiz, A. Henry, New J. Phys. 17, 103002 (2015)

    Article  Google Scholar 

  17. N.Q. Le, C.A. Polanco, R. Rastgarkafshgarkolaei, J. Zhang, A.W. Ghosh, P.M. Norris, Phys. Rev. B 95, 144302 (2017)

    Article  Google Scholar 

  18. Y. Zhou, M. Hu, Phys. Rev. B 95, 115313 (2017)

    Article  Google Scholar 

  19. F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T.-H. Liu, M. Goni, Z. Ding, J. Sun, G.A.G. Udalamatta Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A.J. Schmidt, S. Chen, C.-W. Chu, P.Y. Huang, D. Broido, L. Shi, G. Chen, Z. Ren, Science 361, 582 (2018)

    Article  CAS  Google Scholar 

  20. Y. Zhou, D. Segal, J. Chem. Phys. 133, 1 (2010)

    Google Scholar 

  21. W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185, 1747 (2014)

    Article  CAS  Google Scholar 

  22. B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, H. Zhu, Sci. Rep. 6, 2 (2016). arXiv:1508.02156

    Article  Google Scholar 

  23. Y. Hu, Y. Yin, S. Li, H. Zhou, D. Li, G. Zhang, Nano Lett. 20, 7619 (2020)

    Article  CAS  Google Scholar 

  24. N. Mingo, Phys. Rev. B 74, 125402 (2006)

    Article  Google Scholar 

  25. J.-S. Wang, N. Zeng, J. Wang, C.K. Gan, Phys. Rev. E 75, 061128 (2007)

    Article  Google Scholar 

  26. W. Zhang, T.S. Fisher, N. Mingo, J. Heat Transfer 129, 483 (2007)

    Article  CAS  Google Scholar 

  27. Y. Xu, J.-S. Wang, W. Duan, B.-L. Gu, B. Li, Phys. Rev. B 78, 224303 (2008)

    Article  Google Scholar 

  28. J. Dai, Z. Tian, Phys. Rev. B 101, 041301 (2020)

    Article  CAS  Google Scholar 

  29. J. Thingna, J.L. García-Palacios, J.-S. Wang, Phys. Rev. B 85, 195452 (2012)

    Article  Google Scholar 

  30. J. Thingna, H. Zhou, J.-S. Wang, J. Chem. Phys. 141, 194101 (2014)

    Article  Google Scholar 

  31. H. Zhou, G. Zhang, J.S. Wang, Y.W. Zhang, Phys. Rev. B 101, 235305 (2020)

    Article  CAS  Google Scholar 

  32. J.-S. Wang, J. Wang, J.T. Lü, Eur. Phys. J. B 62, 381 (2008)

    Article  CAS  Google Scholar 

  33. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  34. Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Phys. Rev. B 89, 035438 (2014)

    Article  Google Scholar 

  35. H. Zhou, Z.-Y. Ong, G. Zhang, Y.-W. Zhang, Nanoscale 14, 9209 (2022)

    Article  CAS  Google Scholar 

  36. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  CAS  Google Scholar 

  37. J. van Baren, G. Ye, J.-A. Yan, Z. Ye, P. Rezaie, P. Yu, Z. Liu, R. He, C.H. Lui, 2D Mater. 6, 025022 (2019)

    Article  Google Scholar 

  38. Z. Wei, J. Yang, W. Chen, K. Bi, D. Li, Y. Chen, Appl. Phys. Lett. 104, 081903 (2014)

    Article  Google Scholar 

  39. Q. Fu, J. Yang, Y. Chen, D. Li, D. Xu, Appl. Phys. Lett. 106, 031905 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation, Singapore under Award No. NRF-CRP24- 2020-0002. Zhang Y.W. acknowledges the support from Singapore A*STAR SERC CRF Award. The use of computing resources at the A*STAR Computational Centre and National Supercomputer Centre, Singapore is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Zhang or Yong-Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 424 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zhang, G., Wang, JS. et al. Anharmonic quantum thermal transport across a van der Waals interface. MRS Bulletin 48, 614–622 (2023). https://doi.org/10.1557/s43577-022-00456-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00456-6

Keywords

Navigation