Skip to main content
Log in

Modeling materials under coupled extremes: Enabling better predictions of performance

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Materials for the next generation of electric power infrastructure will be subject to harsh service environments featuring extreme levels of stress, temperature, irradiation, and corrosive attack, often simultaneously. In this article, we review the overarching technical issues involved in designing/certifying materials that can withstand these conditions, with specific examples given for fusion plasma containment, molten salt reactors, and thermoelectric devices. Then, we examine the new advances and broad persistent needs for modeling tools capable of both accelerating the discovery of improved materials for such applications, and predicting how materials will evolve, degrade, and eventually fail. Particular emphasis is given to the need for advancing materials informatics and machine learning capabilities in concert with ever more comprehensive multiphysics simulations at intermediate time and length scales to understand how coupled extremes affect properties and performance differently than single extremes in isolation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. D. Butler, Nature 429, 238 (2004)

    Article  CAS  Google Scholar 

  2. G.S. Was, Fundamentals of Radiation Materials Science (Springer, Cham, 2017)

    Book  Google Scholar 

  3. B.D. Wirth, K. Nordlund, D.G. Whyte, D. Xu, MRS Bull. 36(3), 216 (2011). https://doi.org/10.1557/mrs.2011.37

    Article  CAS  Google Scholar 

  4. J.C. Steckel, M. Jakob, To End Coal, Adapt to Regional Realities (Nature Publishing Group, Berlin, 2022)

    Book  Google Scholar 

  5. J.-C. Brachet, I. Idarraga-Trujillo, M. Le Flem, M. Le Saux, V. Vandenberghe, S. Urvoy, E. Rouesne, T. Guilbert, C. Toffolon-Masclet, M. Tupin, J. Nucl. Mater. 517, 268 (2019)

    Article  CAS  Google Scholar 

  6. P. Fenici, A.F. Rebelo, R. Jones, A. Kohyama, L. Snead, J. Nucl. Mater. 258, 215 (1998)

    Article  Google Scholar 

  7. A.F. Rowcliffe, L.M. Garrison, Y. Yamamoto, L. Tan, Y. Katoh, Fusion Eng. Des. 135, 290 (2018)

    Article  CAS  Google Scholar 

  8. E. Stefan, B. Talic, Y. Larring, A. Gruber, T.A. Peters, Int. Mater. Rev. 67, 461 (2022)

    Article  CAS  Google Scholar 

  9. M. Hirscher, V.A. Yartys, M. Baricco, J.B. von Colbe, D. Blanchard, R.C. Bowman Jr., D.P. Broom, C.E. Buckley, F. Chang, P. Chen, J. Alloys Compd. 827, 153548 (2020)

    Article  CAS  Google Scholar 

  10. S.K. Lawrence, J.P. Wharry, JOM 72, 1979 (2020)

    Article  Google Scholar 

  11. G. McCracken, J. Nucl. Mater. 63, 373 (1976)

    Article  CAS  Google Scholar 

  12. D. Post, R. Behrisch, B. Stansfield, “Introduction to the Physics of Plasma Wall Interactions in Controlled Fusion,” in Physics of Plasma-Wall Interactions in Controlled Fusion (Springer, Boston, 1986), pp. 1–14

  13. W. Jacob, C. Linsmeier, M. Rubel, Phys. Scr. 2011(T145), 011001 (2011). https://doi.org/10.1088/0031-8949/2011/T145/011001

    Article  CAS  Google Scholar 

  14. G. McCracken (ed.), Plasma Surface Interactions in Controlled Fusion Devices (Elsevier, Amsterdam, 1978)

  15. G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, Nucl. Fusion 41, 1967 (2001)

    Article  Google Scholar 

  16. A. Lasa, S. Blondel, D. Bernholdt, J. Canik, M. Cianciosa, W. Elwasif, D. Green, P. Roth, T. Younkin, D. Curreli, Nucl. Fusion 61, 116051 (2021)

    Article  CAS  Google Scholar 

  17. K. Schmid, K. Krieger, S. Lisgo, G. Meisl, S. Brezinsek, J.E. Contributors, J. Nucl. Mater. 463, 66 (2015)

    Article  CAS  Google Scholar 

  18. J. Romazanov, A. Kirschner, S. Brezinsek, R. Pitts, D. Borodin, S. Rode, M. Navarro, K. Schmid, E. Veshchev, V. Neverov, Nucl. Fusion 62, 036011 (2022)

    Article  Google Scholar 

  19. M. Mayer, S. Krat, W. Van Renterghem, A. Baron-Wiechec, S. Brezinsek, I. Bykov, P. Coad, Y. Gasparyan, K. Heinola, J. Likonen, Phys. Scr. 2016, 014051 (2016)

    Article  Google Scholar 

  20. M. Balden, M. Mayer, B. Bliewert, E. Bernard, M. Diez, M. Firdaouss, M. Missirlian, B. Pégourié, M. Richou, H. Roche, E. Tsitrone, C. Martin, A. Hakola, Phys. Scr. 96(12), 124020 (2021)

    Article  Google Scholar 

  21. C. Bourdelle, J. Artaud, V. Basiuk, M. Bécoulet, S. Brémond, J. Bucalossi, H. Bufferand, G. Ciraolo, L. Colas, Y. Corre, Nucl. Fusion 55, 063017 (2015)

    Article  Google Scholar 

  22. J. Serp, M. Allibert, O. Beneš, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlíř, R. Yoshioka, D. Zhimin, Prog. Nucl. Energy 77, 308 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014

    Article  CAS  Google Scholar 

  23. W.D. Manly, G.M. Adamson Jr., J.H. Coobs, J.H. DeVan, D.A. Douglas, E.E, Hoffman, P. Patriarca, Aircraft Reactor Experiment–Metallurgical Aspects (No. ORNL-2349, Oak Ridge National Laboratory, Oak Ridge, 1958)

  24. P.N. Haubenreich, J.R. Engel, Nucl. Appl. Technol. 8(2), 118 (1970)

    Article  CAS  Google Scholar 

  25. R. Reed, Superalloys: Foundations and Applications (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  26. M.A. Stopher, Mater. Sci. Technol. 33, 518 (2017). https://doi.org/10.1080/02670836.2016.1187334

    Article  CAS  Google Scholar 

  27. P.F. Tortorelli, H. Wang, K.A. Unocic, M.L. Santella, J.P. Shingledecker, V. Cedro, Long-Term Creep-Rupture Behavior of Inconel Technology (American Society of Mechanical Engineers, New York, 2014)

    Google Scholar 

  28. P.-G. Vincent, H. Moulinec, L. Joëssel, M.I. Idiart, M. Gărăjeu, J. Nucl. Mater. 542, 152463 (2020). https://doi.org/10.1016/j.jnucmat.2020.152463

    Article  CAS  Google Scholar 

  29. D. Olander, J. Nucl. Mater. 300, 270 (2002). https://doi.org/10.1016/s0022-3115(01)00742-5

    Article  CAS  Google Scholar 

  30. J. Zhang, C.W. Forsberg, M.F. Simpson, S. Guo, S.T. Lam, R.O. Scarlat, F. Carotti, K.J. Chan, P.M. Singh, W. Doniger, K. Sridharan, J.R. Keiser, Corros. Sci. 144, 44 (2018). https://doi.org/10.1016/j.corsci.2018.08.035

    Article  CAS  Google Scholar 

  31. N. Skowronski, Telluridm-Induced Corrosion of Structural Alloys for Nuclear Applications in Molten Salts (Massachusetts Institute of Technology, Cambridge, 2017)

    Google Scholar 

  32. J. DeVan, R. Evans III, Corrosion Behavior of Reactor Materials in Fluoride Salt Mixtures (Oak Ridge National Laboratory, Oak Ridge, 1962)

    Book  Google Scholar 

  33. H. McCoy, R.L. Beatty, W.H. Cook, R.E. Gehlbach, C.R. Kennedy, J.W. Koger, A.P. Litman, C.E. Sessions, J.R. Weir, Nucl. Appl. Technol. 8(2), 156 (1970)

    Article  CAS  Google Scholar 

  34. G. Zheng, L. He, D. Carpenter, K. Sridharan, J. Nucl. Mater. 482, 147 (2016)

    Article  CAS  Google Scholar 

  35. R. Pillai, S.S. Raiman, B.A. Pint, J. Nucl. Mater. 546, 152755 (2021). https://doi.org/10.1016/j.jnucmat.2020.152755

    Article  CAS  Google Scholar 

  36. X. Liu, A. Ronne, L.C. Yu, Y. Liu, M. Ge, C.H. Lin, B. Layne, P. Halstenberg, D.S. Maltsev, A.S. Ivanov, S. Antonelli, S. Dai, W.K. Lee, S.M. Mahurin, A.I. Frenkel, J.F. Wishart, X. Xiao, Y.K. Chen-Wiegart, Nat. Commun. 12, 3441 (2021). https://doi.org/10.1038/s41467-021-23598-8

    Article  CAS  Google Scholar 

  37. W. Zhou, Y. Yang, G. Zheng, K.B. Woller, P.W. Stahle, A.M. Minor, M.P. Short, Nat. Commun. 11, 3430 (2020). https://doi.org/10.1038/s41467-020-17244-y

    Article  CAS  Google Scholar 

  38. A. Bakai, “Combined Effect of Molten Fluoride Salt and Irradiation on Ni-Based Alloys,” in Materials Issues for Generation IV Systems (Springer, New York, 2008)

  39. G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nat. Commun. 7, 12167 (2016)

    Article  CAS  Google Scholar 

  40. S. Hao, V.P. Dravid, M.G. Kanatzidis, C. Wolverton, NPJ Comput. Mater. 5(1), 58 (2019)

    Google Scholar 

  41. M.F. Ashby, Acta Metall. 20, 887 (1972). https://doi.org/10.1016/0001-6160(72)90082-x

    Article  CAS  Google Scholar 

  42. H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps for Metals and Alloys (Pergamon Press, Oxford, 1981)

    Google Scholar 

  43. A.L. Gurson, J. Eng. Mater. Technol. 99, 2 (1977). https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  44. C. Wagner, J. Electrochem. Soc. 99(10), 369 (1952). https://doi.org/10.1149/1.2779605

    Article  CAS  Google Scholar 

  45. P.V. Balachandran, D. Xue, J. Theiler, J. Hogden, T. Lookman, Sci. Rep. 6, 19660 (2016). https://doi.org/10.1038/srep19660

    Article  CAS  Google Scholar 

  46. T. Lookman, P.V. Balachandran, D. Xue, R. Yuan, NPJ Comput. Mater. 5, 21 (2019). https://doi.org/10.1038/s41524-019-0153-8

    Article  Google Scholar 

  47. P.V. Balachandran, MRS Bull. 45(7), 579 (2020). https://doi.org/10.1557/mrs.2020.163

    Article  Google Scholar 

  48. A.M. Gopakumar, P.V. Balachandran, D. Xue, J.E. Gubernatis, T. Lookman, Sci. Rep. 8, 3738 (2018). https://doi.org/10.1038/s41598-018-21936-3

    Article  CAS  Google Scholar 

  49. A.J. Keane, AIAA J. 44(4), 879 (2006). https://doi.org/10.2514/1.16875

    Article  Google Scholar 

  50. D. Khatamsaz, B. Vela, P. Singh, D.D. Johnson, D. Allaire, R. Arróyave, Acta Mater. 236, 118133 (2022). https://doi.org/10.1016/j.actamat.2022.118133

    Article  CAS  Google Scholar 

  51. A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, T. Lookman, J.E. Gubernatis, Comput. Mater. Sci. 125, 92 (2016). https://doi.org/10.1016/j.commatsci.2016.08.018

    Article  CAS  Google Scholar 

  52. P. Rajak, A. Krishnamoorthy, A. Mishra, R. Kalia, A. Nakano, P. Vashishta, NPJ Comput. Mater. 7, 108 (2021). https://doi.org/10.1038/s41524-021-00535-3

    Article  CAS  Google Scholar 

  53. A.I.J. Forrester, A. Sóbester, A.J. Keane, Proc. R. Soc. A 463, 3251 (2007). https://doi.org/10.1098/rspa.2007.1900

    Article  Google Scholar 

  54. G. Pilania, J.E. Gubernatis, T. Lookman, Comput. Mater. Sci. 129, 156 (2017). https://doi.org/10.1016/j.commatsci.2016.12.004

    Article  CAS  Google Scholar 

  55. A.E. Tallman, M. Arul Kumar, C. Matthews, L. Capolungo, JOM 73, 126 (2020). https://doi.org/10.1007/s11837-020-04402-2

    Article  Google Scholar 

  56. K. Lee, M.V. Ayyasamy, Y. Ji, P.V. Balachandran, Sci. Rep. 12, 11591 (2022). https://doi.org/10.1038/s41598-022-15618-4

    Article  CAS  Google Scholar 

  57. K. Lee, M.V. Ayyasamy, P. Delsa, T.Q. Hartnett, P.V. Balachandran, NPJ Comput. Mater. 8, 25 (2022). https://doi.org/10.1038/s41524-022-00704-y

    Article  Google Scholar 

  58. T.Q. Hartnett, V. Sharma, S. Garg, R. Barua, P.V. Balachandran, Acta Mater. 231, 117891 (2022). https://doi.org/10.1016/j.actamat.2022.117891

    Article  CAS  Google Scholar 

  59. A.E.A. Allen, A. Tkatchenko, Sci. Adv. 8(18), 7185 (2022). https://doi.org/10.1126/sciadv.abm7185

    Article  CAS  Google Scholar 

  60. W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Proc. Natl. Acad. Sci. U.S.A. 116, 22071 (2019). https://doi.org/10.1073/pnas.1900654116

    Article  CAS  Google Scholar 

  61. C. Molnar, G. Casalicchio, B. Bischl, “Interpretable Machine Learning – A Brief History, State-of-the-Art and Challenges,” in Proceedings of ECML PKDD 2020 Workshops, ed. by I. Koprinska, M. Kamp, A. Appice, C. Loglisci, L. Antonie, A. Zimmermann, R. Guidotti, Ö. Özgöbek, R.P. Ribeiro, R. Gavaldà, J. Gama, L. Adilova, Y. Krishnamurthy, P.M. Ferreira, D. Malerba, I. Medeiros, M. Ceci, G. Manco, E. Masciari, Z.W. Ras, P. Christen, E. Ntoutsi, E. Schubert, A. Zimek, A. Monreale, P. Biecek, S. Rinzivillo, B. Kille, A. Lommatzsch, A. Gulla (Springer, Cham, 2020), pp. 417–431

  62. M. Schmidt, H. Lipson, Science 324, 81 (2009). https://doi.org/10.1126/science.1165893

    Article  CAS  Google Scholar 

  63. Y. Wang, N. Wagner, J.M. Rondinelli, MRS Commun. 9(4), 793 (2019). https://doi.org/10.1557/mrc.2019.85

    Article  CAS  Google Scholar 

  64. S. Desai, A. Strachan, Sci. Rep. 11, 12761 (2021). https://doi.org/10.1038/s41598-021-92278-w

    Article  CAS  Google Scholar 

  65. S. Sun, R. Ouyang, B. Zhang, T.-Y. Zhang, MRS Bull. 44(7), 559 (2019). https://doi.org/10.1557/mrs.2019.156

    Article  Google Scholar 

  66. J. Tanevski, L. Todorovski, S. Džeroski, Eng. Appl. Artif. Intell. 89, 103423 (2020). https://doi.org/10.1016/j.engappai.2019.103423

    Article  Google Scholar 

  67. N.-D. Hoang, C.-T. Chen, K.-W. Liao, Measurement 112, 141 (2017). https://doi.org/10.1016/j.measurement.2017.08.031

    Article  Google Scholar 

  68. W. Gao, X. Chen, D. Chen, J. Adv. Res. 20, 141 (2019). https://doi.org/10.1016/j.jare.2019.07.001

    Article  CAS  Google Scholar 

  69. E.A. Olivetti, J.M. Cole, E. Kim, O. Kononova, G. Ceder, T.Y.-J. Han, A.M. Hiszpanski, Appl. Phys. Rev. (2020). https://doi.org/10.1063/5.0021106

    Article  Google Scholar 

  70. L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041

    Article  CAS  Google Scholar 

  71. I. Singer-Loginova, H.M. Singer, Rep. Prog. Phys. 71(10), 106501 (2008). https://doi.org/10.1088/0034-4885/71/10/106501

    Article  CAS  Google Scholar 

  72. B. Nestler, A. Choudhury, Curr. Opin. Solid State Mater. Sci. 15, 93 (2011). https://doi.org/10.1016/j.cossms.2011.01.003

    Article  CAS  Google Scholar 

  73. S. Blondel, D.E. Bernholdt, K.D. Hammond, L. Hu, D. Maroudas, B.D. Wirth, Fusion Sci. Technol. 71, 84 (2017)

    Article  Google Scholar 

  74. T. Jourdan, G. Bencteux, G. Adjanor, J. Nucl. Mater. 444, 298 (2014). https://doi.org/10.1016/j.jnucmat.2013.10.009

    Article  CAS  Google Scholar 

  75. A.A. Kohnert, B.D. Wirth, L. Capolungo, Comput. Mater. Sci. 149, 442 (2018). https://doi.org/10.1016/j.commatsci.2018.02.049

    Article  CAS  Google Scholar 

  76. B. Devincre, L.P. Kubin, C. Lemarchand, R. Madec, Mater. Sci. Eng. A 309–310, 211 (2001). https://doi.org/10.1016/s0921-5093(00)01725-1

    Article  Google Scholar 

  77. R. Madec, B. Devincre, L. Kubin, T. Hoc, D. Rodney, Science 301, 1879 (2003). https://doi.org/10.1126/science.1085477

    Article  CAS  Google Scholar 

  78. C. Sobie, N. Bertin, L. Capolungo, Metall. Mater. Trans. A 46, 3761 (2015)

    Article  CAS  Google Scholar 

  79. A.A. Kohnert, L. Capolungo, Phys. Rev. Mater. 3(5), 053608 (2019). https://doi.org/10.1103/PhysRevMaterials.3.053608

    Article  CAS  Google Scholar 

  80. C. McElfresh, Y. Cui, S.L. Dudarev, G. Po, J. Marian, Int. J. Plast. 136, 102848 (2021). https://doi.org/10.1016/j.ijplas.2020.102848

    Article  Google Scholar 

  81. A.A. Kohnert, L. Capolungo, NPJ Comput. Mater. 8, 104 (2022)

    Article  CAS  Google Scholar 

  82. C. Sobie, L. Capolungo, D.L. McDowell, E. Martinez, J. Mech. Phys. Solids 105, 161 (2017)

    Article  CAS  Google Scholar 

  83. A.A. Kohnert, L. Capolungo, J. Mech. Phys. Solids 122, 98 (2019). https://doi.org/10.1016/j.jmps.2018.08.023

    Article  Google Scholar 

  84. Q. Yu, S. Chatterjee, K.J. Roche, G. Po, J. Marian, Model. Simul. Mater. Sci. Eng. 29(5), 055021 (2021). https://doi.org/10.1088/1361-651X/ac01ba

    Article  CAS  Google Scholar 

  85. W. Wen, A. Kohnert, M. Arul Kumar, L. Capolungo, C.N. Tomé, Int. J. Plast. 126, 102633 (2020). https://doi.org/10.1016/j.ijplas.2019.11.012

    Article  CAS  Google Scholar 

  86. J.E. Ramos Nervi, J.W. Signorelli, M.I. Idiart, Philos. Mag. 102(7), 589 (2022). https://doi.org/10.1080/14786435.2021.2011979

    Article  CAS  Google Scholar 

  87. A. Patra, D.L. McDowell, Philos. Magn. 92, 861 (2012). https://doi.org/10.1080/14786435.2011.634855

    Article  CAS  Google Scholar 

  88. A. Patra, C.N. Tomé, S.I. Golubov, Philos. Mag. 97, 2018 (2017). https://doi.org/10.1080/14786435.2017.1324648

    Article  CAS  Google Scholar 

  89. N. Bieberdorf, A. Tallman, M.A. Kumar, V. Taupin, R.A. Lebensohn, L. Capolungo, Int. J. Plast 147, 103086 (2021)

    Article  CAS  Google Scholar 

  90. A. Rovinelli, M.C. Messner, D.M. Parks, T.-L. Sham, Integr. Mater. Manuf. Innov. 10, 627 (2021). https://doi.org/10.1007/s40192-021-00228-1

    Article  Google Scholar 

  91. K. Schmid, M. Reinelt, K. Krieger, J. Nucl. Mater. 415, S284 (2011)

    Article  CAS  Google Scholar 

  92. K. Schmid, T. Lunt, Nucl. Mater. Energy 17, 200 (2018)

    Article  Google Scholar 

  93. A. Lasa, J. Canik, S. Blondel, T. Younkin, D. Curreli, J. Drobny, P. Roth, M. Cianciosa, W. Elwasif, D. Green, Phys. Scr. 2020, 014041 (2020)

    Article  Google Scholar 

  94. P. Stangeby, J. Elder, J. Nucl. Mater. 196, 258 (1992)

    Article  Google Scholar 

  95. A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrim SP, Version 5.00 (IPP 12/8, Max-Planck-Institut für Plasmaphysik, Garching, 2011)

  96. R. Schneider, X. Bonnin, K. Borrass, D. Coster, H. Kastelewicz, D. Reiter, V. Rozhansky, B. Braams, Contrib. Plasma Phys. 46, 3 (2006)

    Article  CAS  Google Scholar 

  97. R. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J. Gunn, T. Hirai, A. Kukushkin, E. Kaveeva, M. Miller, D. Moulton, Nucl. Mater. Energy 20, 100696 (2019)

    Article  Google Scholar 

  98. R. Khaziev, D. Curreli, Phys. Plasmas 22, 043503 (2015)

    Article  Google Scholar 

  99. T.R. Younkin, D.L. Green, A.B. Simpson, B. Wirth, Comput. Phys. Commun. 264, 107885 (2021)

    Article  CAS  Google Scholar 

  100. J. Drobny, A. Hayes, D. Curreli, D.N. Ruzic, J. Nucl. Mater. 494, 278 (2017)

    Article  CAS  Google Scholar 

  101. G. Po, M.S. Mohamed, T. Crosby, C. Erel, A. El-Azab, N. Ghoniem, JOM 66, 2108 (2014). https://doi.org/10.1007/s11837-014-1153-2

    Article  Google Scholar 

Download references

Acknowledgments

A.A.K. and L.C. acknowledge support as part of FUTURE (Fundamental Understanding of Transport Under Reactor Extremes), an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) (molten salt reactor) and from the Extreme Environment Materials (XMAT) program funded by DOE, Office of Fossil Energy and Carbon Management. B.D.W. acknowledges financial support from the US Department of Energy, Office of Fusion Energy Sciences under Grant No. DOE-DE-SC0006661 and the US Department of Energy, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions. P.V.B. acknowledges support from the Defense Advanced Research Projects Agency (DARPA) and the Army Research Office under Grant No. W911NF-20-1-0289. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA, the Army Research Office, or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Capolungo.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohnert, A.A., Wirth, B.D., Wolverton, C. et al. Modeling materials under coupled extremes: Enabling better predictions of performance. MRS Bulletin 47, 1120–1127 (2022). https://doi.org/10.1557/s43577-022-00455-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00455-7

Keywords

Navigation