Skip to main content

Advertisement

Log in

Synthesis of far-from-equilibrium materials for extreme environments

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The search for materials that meet contemporary engineering challenges requires the exploration of structures only found beyond those achieved through conventional synthesis and processing techniques. These far-from-equilibrium materials are achievable through the application of one or multiple coupled extreme environments, allowing the systems to be kinetically trapped, or meta-equilibrated, in unique conditions across several length scales during processing. Here, we provide an overview of how coupled extreme environments, such as high temperature, high load or shear, irradiation and oxidation, may lead to the formation of materials with unique hierarchical microstructures with tolerance to harsh conditions beyond the capabilities of conventional materials. We discuss fundamentals, challenges, and opportunities of unprecedented performances for metals, oxides, and boride ceramics highlighting the distinctive characteristics that make these far-from-equilibrium materials exceptional for use in fields where multiple extreme conditions are met, such as the aerospace, nuclear energy, and energy-storage applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. A.J. Shahani, A.J. Clarke, MRS Bull. 45(11), 906 (2020)

    Article  Google Scholar 

  2. Y. Fan, T. Iwashita, T. Egami, Nat. Commun. 8, 15417 (2017)

    Article  CAS  Google Scholar 

  3. Y. Takamura, R.V. Chopdekar, A. Scholl, A. Doran, J.A. Liddle, B. Harteneck, Y. Suzuki, Nano Lett. 6, 1287 (2006)

    Article  CAS  Google Scholar 

  4. B.-Y. Li, F. Chen, H.-N. Xiong, L. Tang, J.-X. Shao, Z.-J. Yang, Results Phys. 28, 104681 (2021)

    Article  Google Scholar 

  5. D. Yu, B. Zhang, J. Yin, Y. Wang, X. Liu, M.J. Reece, Z. Huang, J. Am. Ceram. Soc. 105, 76 (2022)

    Article  CAS  Google Scholar 

  6. W. Knafo, S. Araki, G. Lapertot, D. Aoki, G. Knebel, D. Braithwaite, Nat. Phys. 16, 942 (2020)

    Article  CAS  Google Scholar 

  7. B. Schuster, F. Fujara, B. Merk, R. Neumann, T. Seidl, C. Trautmann, Nucl. Instrum. Methods Phys. Res. B 277, 45 (2012)

    Article  CAS  Google Scholar 

  8. N. Nafsin, R.H.R. Castro, J. Mater. Res. 32, 166 (2017)

    Article  CAS  Google Scholar 

  9. L. Zhang, J. Wu, F. Chen, X. Li, J.M. Schoenung, Q. Shen, J. Asian Ceram. Soc. 1, 114 (2013)

    Article  Google Scholar 

  10. M. Sokol, S. Kalabukhov, M.P. Dariel, N. Frage, J. Eur. Ceram. Soc. 34, 4305 (2014)

    Article  CAS  Google Scholar 

  11. A. Bokov, J.A. Aguiar, M.L. Gong, A. Nikonov, R.H.R. Castro, J. Phys. Chem. C 122, 26344 (2018)

    Article  CAS  Google Scholar 

  12. K.C. Bedin, A.L.M. Freitas, A. Tofanello, I. Rodríguez-Gutiérrez, F.L. Souza, Int. J. Ceram. Eng. Sci. 2, 204 (2020)

    Article  CAS  Google Scholar 

  13. R.H.R. Castro, Curr. Opin. Solid State Mater. Sci. 25, 100911 (2021)

    Article  CAS  Google Scholar 

  14. R.H.R. Castro, D. Gouvêa, J. Am. Ceram. Soc. 99, 1105 (2016)

    Article  CAS  Google Scholar 

  15. T. Jiang, Y. Liu, Z. Wang, W. Sun, J. Qiao, K. Sun, J. Power Sources 248, 70 (2014)

    Article  CAS  Google Scholar 

  16. M.C. Steil, D. Marinha, Y. Aman, J.R.C. Gomes, M. Kleitz, J. Eur. Ceram. Soc. 33, 2093 (2013)

    Article  CAS  Google Scholar 

  17. H.J. Avila-Paredes, K. Choi, C.-T. Chen, S. Kim, J. Mater. Chem. 19, 4837 (2009)

    Article  CAS  Google Scholar 

  18. J.F. Rufner, D. Kaseman, R.H.R. Castro, K. van Benthem, J. Am. Ceram. Soc. 99, 1951 (2016)

    Article  CAS  Google Scholar 

  19. M. Lachal, H. El Khal, D. Bouvard, J.-M. Chaix, R. Bouchet, M.C. Steil, J. Am. Ceram. Soc. 104, 3845 (2021)

    Article  CAS  Google Scholar 

  20. O. Guillon, Int. J. Ceram. Eng. Sci. 3, 100 (2021)

    Article  CAS  Google Scholar 

  21. H. Watzman, Nature 462, 712 (2009)

    Article  CAS  Google Scholar 

  22. Y. Deng, J.S. Schilling, Phys. Rev. B 99, 85137 (2019)

    Article  CAS  Google Scholar 

  23. H. Assadi, H. Kreye, F. Gärtner, T. Klassen, Acta Mater. 116, 382 (2016)

    Article  CAS  Google Scholar 

  24. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R Rep. 50(1–2), 1 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  25. R. Kalsar, X. Ma, J. Darsell, D. Zhang, K. Kappagantula, D.R. Herling, V.V. Joshi, Mater. Sci. Eng. A 883, 142575 (2022). https://doi.org/10.1016/j.msea.2021.142575

    Article  CAS  Google Scholar 

  26. X. Li, W. Tang, A.P. Reynolds, W.A. Tayon, C.A. Brice, J. Mater. Process. Technol. 229, 191 (2016)

    Article  CAS  Google Scholar 

  27. N.R. Overman, S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, E.L. Stevens, J.T. Darsell, V.V. Joshi, X. Jiang, K.F. Mattlin, S.N. Mathaudhu, Mater. Sci. Eng. A 701, 56 (2017)

    Article  CAS  Google Scholar 

  28. S. Whalen, N. Overman, V. Joshi, T. Varga, D. Graff, C. Lavender, Mater. Sci. Eng. A 755, 278 (2019)

    Article  CAS  Google Scholar 

  29. D. Catalini, D. Kaoumi, A.P. Reynolds, G.J. Grant, J. Nucl. Mater. 442 (1–3) (Suppl. 1), S112 (2013). https://doi.org/10.1016/j.jnucmat.2012.11.054

    Article  CAS  Google Scholar 

  30. S. Hanke, J.F. dos Santos, J. Mater. Process. Technol. 247, 257 (2017)

    Article  CAS  Google Scholar 

  31. O.G. Rivera, P.G. Allison, J.B. Jordon, O.L. Rodriguez, L.N. Brewer, Z. McClelland, W.R. Whittington, D. Francis, J. Su, R.L. Martens, N. Hardwick, Mater. Sci. Eng. A 694, 1 (2017)

    Article  CAS  Google Scholar 

  32. S. Whalen, S. Jana, D. Catalini, N. Overman, J. Sharp, J. Electron. Mater. 45, 3390 (2016)

    Article  CAS  Google Scholar 

  33. B. Gwalani, M. Olszta, S. Varma, L. Li, A. Soulami, E. Kautz, S. Pathak, A. Rohatgi, P.V. Sushko, S. Mathaudhu, C.A. Powell, A. Devaraj, Commun. Mater. 1, 85 (2020). https://doi.org/10.1038/s43246-020-00087-x

    Article  Google Scholar 

  34. B. Gwalani, Q. Pang, A. Yu, W. Fu, L. Li, M. Pole, C. Roach, S.N. Mathaudhu, T. Ajantiwalay, M. Efe, S. Hu, M. Song, A. Soulami, A. Rohatgi, Y. Li, P.V. Sushko, A. Devaraj, ACS Omega 7, 13721 (2022)

    Article  CAS  Google Scholar 

  35. M. Komarasamy, X. Li, S.A. Whalen, X. Ma, N. Canfield, M.J. Olszta, T. Varga, A.L. Schemer-Kohrn, A. Yu, N.R. Overman, S.N. Mathaudhu, G.J. Grant, J. Mater. Sci. 56, 12864 (2021)

    Article  CAS  Google Scholar 

  36. T. Liu, M. Olszta, B. Gwalani, C. Park, S. Mathaudhu, A. Devaraj, Materialia 15, 101049, (2021). https://doi.org/10.1016/j.mtla.2021.101049

    Article  CAS  Google Scholar 

  37. N.R. Overman, M.J. Olszta, M. Bowden, X. Li, A. Rohatgi, S.N. Mathaudhu, G.J. Grant, S.A. Whalen, Mater. Des. 211, 110151 (2021). https://doi.org/10.1016/j.matdes.2021.110151

    Article  CAS  Google Scholar 

  38. M. Song, J. Darsell, S. Jana, J. Mater. Sci. 57, 12055 (2022). https://doi.org/10.1007/s10853-022-07355-w

    Article  CAS  Google Scholar 

  39. X. Li, C. Zhou, N. Overman, X. Ma, N. Canfield, K. Kappagantula, J. Schroth, G. Grant, J. Manuf. Process. 65, 397 (2021)

    Article  Google Scholar 

  40. Y. Hovanski, P. Upadhyay, J. Carsley, T. Luzanski, B. Carlson, M. Eisenmenger, A. Soulami, D. Marshall, B. Landino, S. Hartfield-Wunsch, JOM 67, 1045 (2015)

    Article  CAS  Google Scholar 

  41. B.S. Taysom, N. Overman, M. Olszta, M. Reza-E-Rabby, T. Skszek, M. DiCiano, S. Whalen, Int. J. Mach. Tools Manuf. 169, 103798 (2021). https://doi.org/10.1016/j.ijmachtools.2021.103798

    Article  Google Scholar 

  42. S. Whalen, M. Olszta, M. Reza-E-Rabby, T. Roosendaal, T. Wang, D. Herling, B.S. Taysom, S. Suffield, N. Overman, J. Manuf. Process. 71, 699 (2021)

    Article  Google Scholar 

  43. B.S. Taysom, M. Reza-E-Rabby, X. Ma, M. DiCiano, T. Skszek, S. Whalen, “Fabrication of Aluminum Alloy 6063 Tubing from Secondary Scrap with Shear Assisted Processing and Extrusion,” in Light Metals 2022, The Minerals, Metals & Materials Series, ed. by D. Eskin (Springer, Cham, 2022), pp. 294–300

  44. X. Jiang, S.A. Whalen, J.T. Darsell, S.N. Mathaudhu, N.R. Overman, Mater. Charact. 123, 166 (2017)

    Article  CAS  Google Scholar 

  45. D. Catalini, D. Kaoumi, A.P. Reynolds, G.J. Grant, Metall. Mater. Trans. A 46, 4730 (2015)

    Article  CAS  Google Scholar 

  46. L. Silvestroni, H.-J. Kleebe, W.G. Fahrenholtz, J. Watts, Sci. Rep. 7(1), 40730 (2017)

    Article  CAS  Google Scholar 

  47. W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou (eds.), Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications (Wiley, Hoboken, 2014)

  48. L. Silvestroni, N. Gilli, A. Migliori, D. Sciti, J. Watts, G.E. Hilmas, W.G. Fahrenholtz, Compos. B Eng. 183, 107618 (2020). https://doi.org/10.1016/j.compositesb.2019.107618

    Article  CAS  Google Scholar 

  49. N. Gilli, J. Watts, W.G. Fahrenholtz, D. Sciti, L. Silvestroni, Compos. B Eng. 226, 109344 (2021)

    Article  CAS  Google Scholar 

  50. L. Silvestroni, N. Gilli, A. Sangiorgi, A. Corozzi, S. Filipovic, N. Obradović, L. Ortiz-Membrado, E. Jiménez-Piqué, W.G. Fahrenholtz, J. Adv. Ceram. (in press)

  51. J.S. Moya, S. Lopez-Esteban, C. Pecharromán, Prog. Mater. Sci. 52, 1017 (2007)

    Article  CAS  Google Scholar 

  52. L. Silvestroni, D. Sciti, J. Am. Ceram. Soc. 94(6), 1920 (2011). https://doi.org/10.1111/j.1551-2916.2010.04317.x

    Article  CAS  Google Scholar 

  53. L. Silvestroni, D. Sciti, F. Monteverde, K. Stricker, H.-J. Kleebe, J. Am. Ceram. Soc. 100(4), 1760 (2017). https://doi.org/10.1111/jace.14738

    Article  CAS  Google Scholar 

  54. L. Silvestroni, S. Failla, V. Vinokurov, I. Neshpor, O. Grigoriev, Scr. Mater. 160, 1 (2019). https://doi.org/10.1016/j.scriptamat.2018.09.024

    Article  CAS  Google Scholar 

  55. L. Silvestroni, D. Sciti, J. Alloys Compd. 602, 346 (2014). https://doi.org/10.1016/j.jallcom.2014.02.133

    Article  CAS  Google Scholar 

  56. J.F. Bartolome, M. Diaz, J. Requena, J.S. Moya, A.P. Tomsia, Acta Mater. 47, 3891 (1999)

    Article  CAS  Google Scholar 

  57. W.G. Fahrenholtz, D.T. Ellerby, R.E. Loehman, J. Am. Ceram. Soc. 83, 1279 (2000)

    Article  CAS  Google Scholar 

  58. W.H. Tuan, R.J. Brook, J. Eur. Ceram. Soc. 6, 31 (1990)

    Article  CAS  Google Scholar 

  59. W.H. Tuan, S.M. Liu, C.J. Ho, C.S. Lin, T.J. Yang, D.M. Zhang, Z.Y. Fu, J.K. Guo, J. Eur. Ceram. Soc. 25, 3125 (2005)

    Article  CAS  Google Scholar 

  60. A.A. Khan, J.C. Labbe, J. Mater. Sci. 32, 3829 (1997)

    Article  CAS  Google Scholar 

  61. J. Huang, C. Li, J. Mater. Res. 9, 3153 (1994)

    Article  CAS  Google Scholar 

  62. E.W. Neuman, G.E. Hilmas, W.G. Fahrenholtz, J. Am. Ceram. Soc. 96, 47 (2013)

    Article  CAS  Google Scholar 

  63. E.W. Neuman, H.J. Brown-Shaklee, J.L. Watts, G. Hilmas, W. Fahrenholtz, Am. Ceram. Soc. Bull. 92, 36 (2013)

    CAS  Google Scholar 

  64. L. Silvestroni, K. Stricker, D. Sciti, H.J. Kleebe, Acta Mater. 151, 216 (2018)

    Article  CAS  Google Scholar 

  65. L. Silvestroni, S. Mungiguerra, D. Sciti, G.D. Di Martino, R. Savino, Corros. Sci. 159, 108125 (2019)

    Article  CAS  Google Scholar 

  66. G.B. Olson, Science 277, 1237 (1997)

    Article  CAS  Google Scholar 

  67. L. Feng, W.G. Fahrenholtz, G.E. Hilmas, L. Silvestroni, J. Am. Ceram. Soc. 105, 5032 (2022)

    Article  CAS  Google Scholar 

  68. E.P. George, R.O. Ritchie, MRS Bull. 47(2), 145 (2022)

    Article  Google Scholar 

  69. Y. Shang, J. Brechtl, C. Pistidda, P.K. Liaw, “Mechanical Behavior of High-Entropy Alloys: A Review,” in High-Entropy Materials: Theory, Experiments, and Applications, ed. by J. Brechtl, P.K. Liaw (Springer, Cham, 2021), pp. 435–522. https://doi.org/10.1007/978-3-030-77641-1_10

  70. R. Feng, B. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, Y. Ren, K. An, M. Widom, P.K. Liaw, Adv. Mater. 33, 2102401 (2021)

    Article  CAS  Google Scholar 

  71. R.O. Ritchie, R.M. Cannon, B.J. Dalgleish, R.H. Dauskardt, J.M. McNaney, “On the Strength and Toughness of Structural Ceramics Bonded to Metals,” in Advanced Materials ’93. Ceramics, Powders, Corrosion and Advanced Processing (Elsevier, Amsterdam, 1994), pp. 409–412. https://doi.org/10.1016/B978-0-444-81991-8.50104-7

  72. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    Article  CAS  Google Scholar 

  73. F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016). https://doi.org/10.1103/PhysRevLett.116.135504

    Article  CAS  Google Scholar 

  74. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004)

    Article  Google Scholar 

  75. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Nat. Commun. 6, 8485 (2015)

    Article  CAS  Google Scholar 

  76. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, Nat. Commun. 9(1), 3400 (2018)

    Article  Google Scholar 

  77. D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Status Solidi Rapid Res. Lett. 10, 328 (2016)

    Article  Google Scholar 

  78. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater. 142, 116 (2018)

    Article  CAS  Google Scholar 

  79. J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington, P. Hopkins, K. Vecchio, J. Luo, J. Mater. 5, 337 (2019)

    Google Scholar 

  80. Y. Qin, J.X. Liu, F. Li, X. Wei, H. Wu, G.J. Zhang, J. Adv. Ceram. 8, 148 (2019)

    Article  CAS  Google Scholar 

  81. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6, 37946 (2016)

    Article  CAS  Google Scholar 

  82. G. Tallarita, R. Licheri, S. Garroni, R. Orrù, G. Cao, Scr. Mater. 158, 100 (2019)

    Article  CAS  Google Scholar 

  83. Y. Zhang, Z. Bin Jiang, S.K. Sun, W.M. Guo, Q.S. Chen, J.X. Qiu, K. Plucknett, H.T. Lin, J. Eur. Ceram. Soc. 39, 3920 (2019)

    Article  CAS  Google Scholar 

  84. C. Toher, C. Oses, M. Esters, D. Hicks, G.N. Kotsonis, C.M. Rost, D.W. Brenner, J.-P. Maria, S. Curtarolo, MRS Bull. 47(2), 194 (2022)

    Article  CAS  Google Scholar 

  85. P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9, 4980 (2018). https://doi.org/10.1038/s41467-018-07160-7

    Article  CAS  Google Scholar 

  86. E. Castle, T. Csanádi, S. Grasso, J. Dusza, M. Reece, Sci. Rep. 8, 8609 (2018). https://doi.org/10.1038/s41598-018-26827-1

    Article  CAS  Google Scholar 

  87. A. Nisar, C. Zhang, B. Boesl, A. Agarwal, Ceram. Int. 46, 25845 (2020)

    Article  CAS  Google Scholar 

  88. J. Gild, A. Wright, K. Quiambao-Tomko, M. Qin, J.A. Tomko, M. Shafkat bin Hoque, J.L. Braun, B. Bloomfield, D. Martinez, T. Harrington, K. Vecchio, P.E. Hopkins, J. Luo, Ceram. Int. 46, 6906 (2020)

    Article  CAS  Google Scholar 

  89. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)

    Article  CAS  Google Scholar 

  90. P. Kolodziej, J.V. Bowles, C. Roberts, “Optimizing Hypersonic Sharp Body Concepts from a Thermal Protection System Perspective,” 8th AIAA International Space Planes and Hypersonic Systems Technologies Conference (Norfolk, April 27–30, 1998), pp. 556–571

  91. D.E. Glass, “Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles,” 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference (Dayton, April 28–May 1, 2008), pp. 1–36

  92. M. Miller-Oana, P. Neff, M. Valdez, A. Powell, M. Packard, L.S. Walker, E.L. Corral, J. Am. Ceram. Soc. 98, 1300 (2015)

    Article  CAS  Google Scholar 

  93. G. Tallarita, R. Licheri, S. Garroni, S. Barbarossa, R. Orrù, G. Cao, J. Eur. Ceram. Soc. 40, 942 (2020)

    Article  CAS  Google Scholar 

  94. E.A. Olevsky, S.M. Rolfing, A.L. Maximenko, Sci. Rep. 6, 33408 (2016)

    Article  CAS  Google Scholar 

  95. J. Gild, K. Kaufmann, K. Vecchio, J. Luo, Scr. Mater. 170, 106 (2019)

    Article  CAS  Google Scholar 

  96. L. Feng, W.G. Fahrenholtz, G.E. Hilmas, F. Monteverde, J. Eur. Ceram. Soc. 41, 92 (2021)

    Article  CAS  Google Scholar 

  97. M. Qin, S. Shivakumar, T. Lei, J. Gild, E.C. Hessong, H. Wang, K.S. Vecchio, T.J. Rupert, J. Luo, J. Eur. Ceram. Soc. 42, 5164 (2022)

    Article  CAS  Google Scholar 

  98. L. Backman, J. Gild, J. Luo, E.J. Opila, Acta Mater. 197, 20 (2020)

    Article  CAS  Google Scholar 

  99. L. Backman, J. Gild, J. Luo, E.J. Opila, Acta Mater. 197, 81 (2020)

    Article  CAS  Google Scholar 

  100. T.M. Butler, K.J. Chaput, J.R. Dietrich, O.N. Senkov, J. Alloys Compd. 729, 1004 (2017)

    Article  CAS  Google Scholar 

  101. F. Müller, B. Gorr, H.-J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, Corros. Sci. 159, 108161 (2019). https://doi.org/10.1016/j.corsci.2019.108161

    Article  CAS  Google Scholar 

  102. Z. Gong, Q. Zeng, W. Zhao, K. Guan, P. Rao, Q. Zeng, J. Liu, Z. Feng, J. Am. Ceram. Soc. 103(10), 5900 (2020)

  103. B.E. Hopkins, J. Less-Common Met. 2, 172 (1960)

    Article  Google Scholar 

  104. R.L. Fleischer, JOM, 37, 16 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L.S. acknowledges the contribution from Prof. W.G. Fahrenholtz and Prof. G.E. Hilmas from Missouri University of Science and Technology in Rolla for strength tests above 1600°C.

Funding

L.S. acknowledges the funds received from the NATO Science for Peace and Security Programme under Grant No. MYP-G5767 (SUSPENCE) and from the US AFOSR through the Cooperative Agreement No. FA9550-21-1-0399 (NACREOUS) with M.-J. Pan as contract monitor. R.C. thanks DMR Ceramics 2015650 and FAPESP 2022/04150-6. C.P. acknowledges support by the Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory (PNNL) as part of the Solid Phase Processing Science Initiative. PNNL is a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract No. DEAC05-76RL01830. K.A.A. gratefully acknowledges financial support from the National Research Council Research Associateship Program. L.M.R. and K.A.A. are grateful to D. Miracle for insightful discussions and review. Any views expressed here are those of the authors’ and do not reflect the official policy or position of the US Air Force, Department of Defense, or the US Government. Distribution A; cleared for public release (AFR-2022-4227).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Katherine A. Acord.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestroni, L., Rueschhoff, L.M., Acord, K.A. et al. Synthesis of far-from-equilibrium materials for extreme environments. MRS Bulletin 47, 1143–1153 (2022). https://doi.org/10.1557/s43577-022-00454-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00454-8

Keywords

Navigation