Skip to main content
Log in

Three-dimensional morphology and elastic strain revealed in individual photoferroelectric SbSI nanowire

MRS Bulletin Aims and scope Submit manuscript

Cite this article

Abstract

Antimony sulfoiodide (SbSI) exhibits great promise for photovoltaic applications due to it being optically active in its ferroelectric phase. Previous studies on the SbSI system have relied largely on ensemble-averaging techniques and/or computational studies, wherein true volumetric enumeration of atomic displacement has remained ambiguous at the nanoscale. Here, we have mapped strain and the complex Bragg electronic density among the (002) planes in an individual SbSI nanowire using Bragg coherent diffractive imaging in hopes of guiding efforts to strain engineer SbSI nanostructures for photovoltaic and other optoelectronic applications. We have found that the as-grown nanowire showed sharp faceting and high crystallinity, with no evidence of point or line mechanical defects in the (002) atomic displacement map (u002). There is evidence, however, of planar defects in the wire that separate regions of positive and negative shear strain (\({\uptau }_{32})\) where these domain walls are parallel to the (011)-type facets. Increased Bragg electronic density near the center of the nanowire shows that the nanowires could have additional dangling bonds present there, increasing the likelihood that shells could bond to the wire for strain-engineering purposes.

Impact statement

Bragg coherent diffractive imaging (BCDI) is a lensless imaging technique with promised diffraction-limited spatial resolution. The technique is susceptible to local lattice distortion and structural heterogeneities with quantitative phase information. BCDI is currently widely used in nanotechnology and materials sciences in general. This article demonstrates the application of BCDI on antimony sulfoiodide (SbSI) nanowires that harbor large shear strains due to dangling bonds and crystal-tilting. SbSI is a ferroelectric material with a relatively narrow bandgap, high pyroelectricity, optical activity, and piezoelectricity, making it a promising material for infrared detectors, actuators, and storage devices. Several elastic shear domains in the shear strain component were observed in the SbSl nanowire, leading to the potential formation of ferroelectric domains above room temperature in the nanowire. The likely elastic domains identified in the BCDI reconstructions are the consequences of the strain energy minimization, originating from the global shear present in the SbSl nanowire. Our studies open up a new avenue for local strain mapping and strain-engineering characterization of above room-temperature optoelectronic nanodevices. We envisage that BCDI characterization could be used to learn and develop crucial properties on emergent nanostructure of technological importance. Ultimately, the development and optimization of associated functional devices with real-world applications are attainable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data are available both at the Advanced Photon Source and upon request from the corresponding author.

References

  1. L. Lv, F. Zhuge, F. Xie, X. Xiong, Q. Zhang, N. Zhang, Y. Huang, T. Zhai, Nat. Commun. 10, 3331 (2019)

    Article  Google Scholar 

  2. Z.-D. Luo, X. Xia, M.-M. Yang, N.R. Wilson, A. Gruverman, M. Alexe, ACS Nano 14, 746 (2020)

    Article  CAS  Google Scholar 

  3. S. Rühle, Sol. Energy 130, 139 (2016)

    Article  Google Scholar 

  4. L.Z. Tan, F. Zheng, S.M. Young, F. Wang, S. Liu, A.M. Rappe, NPJ Comput. Mater. 2(1), 16026 (2016)

    Article  Google Scholar 

  5. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.-H. Yang, M.D. Rossell, P. Yu, Y.-H. Chu, J.F. Scott, J.W. Ager III, L.W. Martin, R. Ramesh, Nat. Nanotechnol. 5, 143 (2010)

  6. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 9, 61 (2015)

    Article  CAS  Google Scholar 

  7. R. Guo, L. You, Y. Zhou, Z. Shiuh Lim, X. Zou, L. Chen, R. Ramesh, J. Wang, Nat. Commun. 4, 1990 (2013)

    Article  Google Scholar 

  8. N. Vonrüti, U. Aschauer, J. Mater. Chem. A 7, 15741 (2019)

    Article  Google Scholar 

  9. Y. Wang, Y. Hu, Z. Chen, Y. Guo, D. Wang, E.A. Wertz, J. Shi, Appl. Phys. Lett. 112, 183104 (2018)

    Article  Google Scholar 

  10. A.S. Bhalla, R.E. Newnham, L.E. Cross, J.P. Dougherty, W.A. Smith, Ferroelectrics 33, 3 (1981)

    Article  CAS  Google Scholar 

  11. M. Nowak, P. Szperlich, Opt. Mater. (Amst) 35(6), 1200 (2013)

    Article  CAS  Google Scholar 

  12. K. Mistewicz, M. Nowak, D. Stróż, Nanomaterials 9, 13 (2019)

    Article  Google Scholar 

  13. B. Garbarz-Glos, J. Grigas, Ferroelectrics 393, 38 (2009)

    Article  CAS  Google Scholar 

  14. R. Nie, H. Yun, M.-J. Paik, A. Mehta, B. Park, Y.C. Choi, S. Il Seok, Adv. Energy Mater. 8, 1701901 (2018)

    Article  Google Scholar 

  15. K. Mistewicz, M. Nowak, D. Stróż, A. Guiseppi-Elie, Talanta 189, 225 (2018)

    Article  CAS  Google Scholar 

  16. J. Shen, X. Liu, C. Wang, J. Wang, B. Wu, X. Chen, G. Yi, J. Phys. D 53, 345106 (2020)

    Article  CAS  Google Scholar 

  17. M. Tamilselvan, A.J. Bhattacharyya, RSC Adv. 6, 105980 (2016)

    Article  CAS  Google Scholar 

  18. N. Ogawa, M. Sotome, Y. Kaneko, M. Ogino, Y. Tokura, Phys. Rev. B 96, 241203 (2017)

    Article  Google Scholar 

  19. E. Fatuzzo, G. Harbeke, W.J. Merz, R. Nitsche, H. Roetschi, W. Ruppel, Phys. Rev. 127, 2036 (1962)

    Article  CAS  Google Scholar 

  20. Y. Wang, X. Sun, Z. Chen, Z. Cai, H. Zhou, T.-M. Lu, J. Shi, Sci. Adv. 4, eaar3679 (2018)

    Article  Google Scholar 

  21. D. Karpov, E. Fohtung, J. Appl. Phys. 125, 121101 (2019)

    Article  Google Scholar 

  22. M.J. Cherukara, W. Cha, R.J. Harder, Appl. Phys. Lett. 113, 203101 (2018)

    Article  Google Scholar 

  23. M.C. Newton, S.J. Leake, R. Harder, I.K. Robinson, Nat. Mater. 9, 120 (2010)

    Article  CAS  Google Scholar 

  24. D. Dzhigaev, A. Shabalin, T. Stankevič, U. Lorenz, R.P. Kurta, F. Seiboth, J. Wallentin, A. Singer, S. Lazarev, O.M. Yefanov, M. Borgström, M.N. Strikhanov, L. Samuelson, G. Falkenberg, C.G. Schroer, A. Mikkelsen, R. Feidenhans'l, I.A. Vartanyants, J. Opt. 18(6), 064007 (2016)

  25. J. Diao, X. Shi, T.A. Assefa, L. Wu, A.F. Suzana, D.S. Nunes, D. Batey, S. Cipiccia, C. Rau, R.J. Harder, W. Cha, I.K. Robinson, Phys. Rev. Mater. 4(10), 106001 (2020)

  26. N. Laanait, W. Saenrang, H. Zhou, C.-B. Eom, Z. Zhang, Adv. Struct. Chem. Imaging 3, 11 (2017)

    Article  Google Scholar 

  27. D. Karpov, Z. Liu, T.S. dos Rolo, R. Harder, P.V. Balachandran, D. Xue, T. Lookman, E. Fohtung, Nat. Commun. 8, 280 (2017)

    Article  CAS  Google Scholar 

  28. D. Karpov, Z. Liu, A. Kumar, B. Kiefer, R. Harder, T. Lookman, E. Fohtung, Phys. Rev. B 100, 54432 (2019)

    Article  CAS  Google Scholar 

  29. J.W. Kim, S. Manna, R. Harder, J. Wingert, E.E. Fullerton, O.G. Shpyrko, J. Appl. Phys. 123, 204302 (2018)

    Article  Google Scholar 

  30. J. Logan, R. Harder, L. Li, D. Haskel, P. Chen, R. Winarski, P. Fuesz, D. Schlagel, D. Vine, C. Benson, I. McNulty, J. Synchrotron Radiat. 23, 1210 (2016)

  31. S. Manna, J.W. Kim, M.V. Lubarda, J. Wingert, R. Harder, F. Spada, V. Lomakin, O. Shpyrko, E.E. Fullerton, AIP Adv. 7, 125025 (2017)

    Article  Google Scholar 

  32. E. Fohtung, “Magnetostriction Fundamentals,” in Encyclopedia of Smart Materials, ed. by A.-G. Olabi (Elsevier, Oxford, 2022), pp.130–133

    Chapter  Google Scholar 

  33. A. Pateras, R. Harder, S. Manna, B. Kiefer, R.L. Sandberg, S. Trugman, J.W. Kim, J. de la Venta, E.E. Fullerton, O.G. Shpyrko, E. Fohtung, NPG Asia Mater. 11, 59 (2019)

  34. J.R. Fienup, Appl. Opt. 21, 2758 (1982)

    Article  CAS  Google Scholar 

  35. Z. Liu, E. Schold, D. Karpov, R. Harder, T. Lookman, E. Fohtung, Adv. Electron. Mater. 6, 1901300 (2020)

    Article  CAS  Google Scholar 

  36. A. Kikuchi, Y. Oka, E. Sawaguchi, J. Phys. Soc. Jpn. 23, 337 (1967)

    Article  CAS  Google Scholar 

  37. Z. Barringer, J. Jiang, X. Shi, E. Schold, A. Pateras, S. Cipiccia, C. Rau, J. Shi, E. Fohtung, CrystEngComm 23(36), 6239 (2021)

    Article  CAS  Google Scholar 

  38. M.A.G. Aranda, F. Berenguer, R.J. Bean, X. Shi, G. Xiong, S.P. Collins, C. Nave, I.K. Robinson, J. Synchrotron Radiat. 17, 751 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E.F. and J.S. acknowledge support from the US Department of Energy, Award No. DE-SC0023148, and from the National Science Foundation under Award No. 2024972. E.F. also acknowledges funds from Rensselaer Polytechnic Institute. This research used resources of the Advanced Photon Source (APS), a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (ANL) under Contract No. DE-AC02-06CH11357. We thank the staff at ANL and the APS for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Fohtung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schold, E., Barringer, Z., Shi, X. et al. Three-dimensional morphology and elastic strain revealed in individual photoferroelectric SbSI nanowire. MRS Bulletin 48, 467–474 (2023). https://doi.org/10.1557/s43577-022-00445-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00445-9

Keywords

Navigation