Skip to main content

Incorporation of Stokes shifting dyes into a Si-based photovoltaic thermal system


In this article, a novel photovoltaic/thermal (PV/T) geometry is introduced that allows for passive microlensing, IR collection, and photovoltaic deployment, as in previous implementations, together with spectral splitting. Stokes shifting dyes of the Coumarin family were dispersed in a thermal fluid in front of a single-junction amorphous silicon PV using a tubular focusing geometry. This architecture effectively shifts the high-energy UV flux into near bandgap photons for the Si, while capturing the released energy of the Stokes transition as heat. By combining this with the thermal fluid’s IR absorption and the PV, the system converts a surprising amount of the solar flux into collectable power, with a 71.05% thermal conversion efficiency and 2.07% electrical efficiency, leading to a total system efficiency of conversion of 73.1 percent. Temperatures and heat flow were then simulated to connect optical characteristics to thermal transport characteristics and allow for optimization under various circumstances.

Impact statement

The large entry cost of solar makes it unattainable for large segments of the world’s population. In this article, we present a photovoltaic/thermal (PV/T) system, made of low-cost, easily accessible materials that are simple to manufacture. Together, the components of the system harvest energy from nearly the entire solar spectrum using a photovoltaic, infrared absorbing thermal fluid and a Stokes shifting dye. The geometry of the PV/T acts as a passive microlens system while providing the additional benefit of keeping the PV cool. The modeling presented allows for optimization in specific applications.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data availability

The data sets generated during this study are available from the corresponding author on reasonable request.

Code availability

The code generated during this study is available from the corresponding author on reasonable request.


  1. Renewables 2021 Global Status Report (REN21, 2021)

  2. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  3. T. Trupke, M.A. Green, P. Würfel, J. Appl. Phys. 92, 1668 (2002).

    Article  CAS  Google Scholar 

  4. H.J. Hovel, R.T. Hodgson, J.M. Woodall, Sol. Energy Mater. 2, 19 (1979).

    Article  CAS  Google Scholar 

  5. B.-C. Hong, K. Kawano, Jpn. J. Appl. Phys. 43, 1421 (2004).

    Article  CAS  Google Scholar 

  6. D.E. Osborn, M.A.C. Chendo, M.A. Hamdy, F. Luttmann, M.R. Jacobson, H.A. Macleod, R. Swenson, Sol. Energy Mater. 14, 299 (1986).

    Article  CAS  Google Scholar 

  7. J.D. McCambridge, M.A. Steiner, B.L. Unger, K.A. Emery, E.L. Christensen, M.W. Wanlass, A.L. Gray, L. Takacs, R. Buelow, T.A. McCollum, J.W. Ashmead, G.R. Schmidt, A.W. Haas, J.R. Wilcox, J. Van Meter, J.L. Gray, D.T. Moore, A.M. Barnett, R.J. Schwartz, Prog. Photovolt. Res. Appl. 19, 352 (2011).

    Article  Google Scholar 

  8. R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser, P. Beutel, N. Razek, M. Wimplinger, B. Bläsi, D. Lackner, M. Hermle, G. Siefer, S.W. Glunz, A.W. Bett, F. Dimroth, Nat. Energy 3, 326 (2018).

    Article  CAS  Google Scholar 

  9. N.H. Vu, T.T. Pham, S. Shin, Energies 13, 2360 (2020).

    Article  CAS  Google Scholar 

  10. G. Huang, S.R. Curt, K. Wang, C.N. Markides, Nano Mater. Sci. 2(3), 183 (2020).

    Article  Google Scholar 

  11. F.Sh. Zainulabdeen, A.H. Al-Hamdani, G.S. Karam, J.H. Ali, AIP Conf. Proc. 2190, 020054 (2019).

    Article  Google Scholar 

  12. X. Ju, C. Xu, X. Han, X. Du, G. Wei, Y. Yang, Appl. Energy 187, 534 (2017).

    Article  CAS  Google Scholar 

  13. H. Ramdani, C. Ould-Lahoucine, Energy Convers. Manag. 222, 113238 (2020).

    Article  Google Scholar 

  14. W.A.M. Al-Shohani, R. Al-Dadah, S. Mahmoud, Appl. Therm. Eng. 109, 475 (2016).

    Article  Google Scholar 

  15. X. Han, L. Tu, Y. Sun, Sol. Energy 223, 168 (2021).

    Article  CAS  Google Scholar 

  16. M. Vaka, R. Walvekar, A.K. Rasheed, M. Khalid, H. Panchal, IEEE Access 8, 58227 (2020).

    Article  Google Scholar 

  17. S. Aberoumand, S. Ghamari, B. Shabani, Sol. Energy 165, 167 (2018).

    Article  CAS  Google Scholar 

  18. Y. Li, E.D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, D.L. Carroll, Appl. Phys. Lett. 96, 243505 (2010).

    Article  CAS  Google Scholar 

  19. H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E.D. Peterson, J. Liu, G. Fang, D.L. Carroll, Sol. Energy 85, 450 (2011).

    Article  CAS  Google Scholar 

  20. L.J. Gray, C. Griffin, W. Wolszczak, P. Allaire, D.L. Carroll, J. Renew. Sustain. Energy 13, 069101 (2021).

    Article  CAS  Google Scholar 

  21. U. Raikar, C.G. Renuka, Y.F. Nadaf, B.G. Mulimani, A.M. Karguppikar, M.K. Soudagar, Spectrochim. Acta A 65, 673 (2006).

    Article  CAS  Google Scholar 

  22. M. Hetmańska, A. Maciejewski, RSC Adv. 7, 44843 (2017).

    Article  Google Scholar 

  23. R. Biswas, J.E. Lewis, M. Maroncelli, Chem. Phys. Lett. 310, 485 (1999).

    Article  CAS  Google Scholar 

  24. F. Sobhnamayan, F. Sarhaddi, M.A. Alavi, S. Farahat, J. Yazdanpanahi, Renew. Energy 68, 356 (2014).

    Article  Google Scholar 

  25. I. Karaaslan, T. Menlik, Sol. Energy 224, 1260 (2021).

    Article  CAS  Google Scholar 

  26. E. Skoplaki, J.A. Palyvos, Sol. Energy 83, 614 (2009).

    Article  CAS  Google Scholar 

  27. B.J. Fontenault, E. Gutierrez-Miravete, “Modeling a Combined Photovoltaic-Thermal Solar Panel,” in Proceedings of 2012 COMSOL Conference (Boston, 2012). Accessed 29 Jul 2022

Download references


The authors would like to thank Laxman Poudel of WFU Physics and Anthony Le of WFU Chemistry for assistance with the spectroscopy measurements. The authors would also like to thank E. Chapman for assistance with handling of the glass tubes and D. Stieler for help with the quantum efficiency of the photovoltaic.


This work was supported by the Center for Nanotechnology and Molecular Materials at Wake Forest University.

Author information

Authors and Affiliations



Authors contributed equally to this work.

Corresponding author

Correspondence to David L. Carroll.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2355 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gray, L.J., Buna, D., Ucer, K.B. et al. Incorporation of Stokes shifting dyes into a Si-based photovoltaic thermal system. MRS Bulletin (2023).

Download citation

  • Accepted:

  • Published:

  • DOI:


  • Cost
  • Efficiency
  • Energy generation
  • Photovoltaic
  • Sustainability