Skip to main content
Log in

Direct measurement of 5f delocalization with U XES

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Delocalization of the 5f states in the early actinides in general and U metal in particular is significantly important and yet poorly understood. Extant spectroscopic techniques have failed to resolve the situation. Here, it will be shown that x-ray emission spectroscopy of the M4,5 levels can provide the needed information, with a distinct difference between the delocalized U metal and localized uranium dioxide and uranium tetrafluoride cases. A peak ratio model, built upon electric dipole selection rules, has been developed and utilized, with quantitative agreement between experiment and theory. Possible expansion to other types of 5f mixing systems will be discussed.

Impact statement

Delocalization of the 5f states in the actinides is problematic. While the atomic size variation in the light actinides indicates that delocalization is vitally important, the conventional tool for the characterization of delocalization, angle-resolved photoelectron spectroscopy and bandmapping, fails. Here, we report the first utilization of UM x-ray emission spectroscopy (XES) as a probe of 5f delocalization. Historically, x-ray absorption spectroscopy into the 5f states has played a key role in the characterization of the 5f occupation. In this article, it is laid out how XES from the 5f states can play a similarly important role in quantifying 5f delocalization. This article includes novel experimental measurements and a quantitative theoretical modeling. The technological innovation that permits these measurements is the new and powerful facility at the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory for tender x-ray measurements, in the regime between hard and soft x-rays.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

References

  1. J.M. Wills, O. Eriksson, Los Alamos Sci. 26, 128 (2000)

    Google Scholar 

  2. S. Hecker, N.G. Cooper, Los Alamos Sci. 26, 16 (2000) (and references therein)

    Google Scholar 

  3. A.M. Boring, J.L. Smith, Los Alamos Sci. 26, 90 (2000)

    CAS  Google Scholar 

  4. W.H. Zachariasen, J. Inorg. Nucl. Chem. 35, 3487 (1973)

    Article  CAS  Google Scholar 

  5. H.L. Skriver, O.K. Andersen, B. Johansson, Phys. Rev. Lett. 41, 42 (1978)

    Article  CAS  Google Scholar 

  6. C.P. Opeil, R.K. Schulze, M.E. Manley, J.C. Lashley, W.L. Hults, R.J. Hanrahan Jr., J.L. Smith, B. Mihaila, K.B. Blagoev, R.C. Albers, P.B. Littlewood, Phys. Rev. B 73, 165109 (2006)

    Article  Google Scholar 

  7. C.P. Opeil, R.K. Schulze, H.M. Volz, J.C. Lashley, M.E. Manley, W.L. Hults, R.J. Hanrahan Jr., J.L. Smith, B. Mihaila, K.B. Blagoev, R.C. Albers, P.B. Littlewood, Phys. Rev. B 75, 045120 (2007)

    Article  Google Scholar 

  8. J.G. Tobin, S. Nowak, S.-W. Yu, R. Alonso-Mori, T. Kroll, D. Nordlung, T.-C. Weng, D. Sokaras, Appl. Sci. 11(9), 3882 (2021)

    Article  CAS  Google Scholar 

  9. J.G. Tobin, S.W. Robey, L.E. Klebanoff, D.A. Shirley, Phys. Rev. B 28, 6169 (1983) (and references therein)

    Article  CAS  Google Scholar 

  10. J.G. Nelson, S. Kim, W.J. Gignac, R.S. Williams, J.G. Tobin, S.W. Robey, D.A. Shirley, Phys. Rev. B 32, 3465 (1985) (and references therein)

    Article  CAS  Google Scholar 

  11. J.G. Tobin, S.W. Robey, D.A. Shirley, Phys. Rev. B 33, 2270 (1986) (and references therein)

    Article  CAS  Google Scholar 

  12. J.G. Tobin, S.W. Robey, L.E. Klebanoff, D.A. Shirley, Phys. Rev. B 35, 9056 (1987) (and references therein)

    Article  CAS  Google Scholar 

  13. J. Tobin, C. Olson, C. Gu, J. Liu, F. Solal, M. Fluss, R. Howell, J. O’Brien, H. Radousky, P. Sterne, Phys. Rev. B 45, 5563 (1992) (and references therein)

    Article  CAS  Google Scholar 

  14. G. Kalkowski, G.K. Kaindl, W.D. Brewer, W. Krone, Phys. Rev. B 35, 2667 (1987)

    Article  CAS  Google Scholar 

  15. J.G. Tobin, S.-W. Yu, C.H. Booth, T. Tyliszczak, D.K. Shuh, G. van der Laan, D. Sokaras, D. Nordlund, T.-C. Weng, P.S. Bagus, Phys. Rev. B 92, 035111 (2015)

    Article  Google Scholar 

  16. J.G. Tobin, S.-W. Yu, R. Qiao, W.L. Yang, C.H. Booth, D.K. Shuh, A.M. Duffin, D. Sokaras, D. Nordlund, T.-C. Weng, Phys. Rev. B 92, 045130 (2015)

    Article  Google Scholar 

  17. G. van der Laan, B.T. Thole, Phys. Rev. B 53, 14458 (1996)

    Article  Google Scholar 

  18. G. van der Laan, K.T. Moore, J.G. Tobin, B.W. Chung, M.A. Wall, A.J. Schwartz, Phys. Rev. Lett. 93, 097401 (2004)

    Article  Google Scholar 

  19. J.G. Tobin, K.T. Moore, B.W. Chung, M.A. Wall, A.J. Schwartz, G. van der Laan, A.L. Kutepov, Phys. Rev. B 72, 085109 (2005)

    Article  Google Scholar 

  20. S.H. Nowak, R. Armenta, C.P. Schwartz, A. Gallo, B. Abraham, A.T. Garcia-Esparza, E. Biasin, A. Prado, A. Maciel, D. Zhang, D. Day, S. Christensen, T. Kroll, R. Alonso-Mori, D. Nordlund, T.-C. Weng, D. Sokaras, Rev. Sci. Instrum. 91, 033101 (2020)

    Article  CAS  Google Scholar 

  21. J.G. Tobin, S. Nowak, C.H. Booth, E.D. Bauer, S.-W. Yu, R. Alonso-Mori, T. Kroll, D. Nordlung, T.-C. Weng, D. Sokaras, J. Electron Spectrosc. Relat. Phenom. 232, 100 (2019)

    Article  CAS  Google Scholar 

  22. J.G. Tobin, S. Nowak, S.-W. Yu, R. Alonso-Mori, T. Kroll, D. Nordlung, T.-C. Weng, D. Sokaras, Surf. Sci. 698, 121607 (2020). https://doi.org/10.1016/j.susc.2020.121607

    Article  CAS  Google Scholar 

  23. J.G. Tobin, S. Nowak, S.-W. Yu, R. Alonso-Mori, T. Kroll, D. Nordlund, T.-C. Weng, D. Sokaras, J. Phys. Commun. 4, 015013 (2020). https://doi.org/10.1088/2399-6528/ab6940

    Article  CAS  Google Scholar 

  24. J. G. Tobin, S. Nowak, S.-W. Yu, R. Alonso-Mori, T. Kroll, D. Nordlung, T.-C. Weng, D. Sokaras, Appl. Sci. 10, 2918 (2020). http://www.mdpi.com/2076-3417/10/8/2918. Erratum https://www.mdpi.com/2076-3417/10/12/4242

  25. J.R. Naegele, “Actinides and Some of Their Alloys and Compounds,” in Electronic Structure of Solids: Photoemission Spectra and Related Data, Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III, Condensed Matter, vol. 23b , ed. by A Goldmann (Springer, Berlin, 1994), p. 183

  26. J.G. Tobin, B.W. Chung, R.K. Schulze, J. Terry, J.D. Farr, D.K. Shuh, K. Heinzelman, E. Rotenberg, G.D. Waddill, G. van der Laan, Phys. Rev. B 68, 155109 (2003)

    Article  Google Scholar 

  27. J.G. Tobin, A.M. Duffin, S.-W. Yu, R. Qiao, W.L. Yang, C.H. Booth, D.K. Shuh, J. Vac. Sci. Technol. A 35, 03E108 (2017)

    Article  Google Scholar 

  28. J.G. Tobin, J. Electron Spectrosc. Relat. Phenom. 194, 14 (2014). https://doi.org/10.1016/j.elspec.2014.01.020

    Article  CAS  Google Scholar 

  29. C.H. Booth, S.A. Medling, J.G. Tobin, R.E. Baumbach, E.D. Bauer, D. Sokaras, D. Nordlund, T.-C. Weng, Phys. Rev. B 94, 045121 (2016)

    Article  Google Scholar 

  30. P. Soderlind, A. Landa, J.G. Tobin, P. Allen, S. Medling, C.H. Booth, E.D. Bauer, J.C. Cooley, D. Sokaras, T.-C. Weng, D. Nordlung, J. Electron Spectrosc. Relat. Phenom. 207, 14 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Stanford Synchrotron Radiation Lightsource is a national user facility operated by Stanford University on behalf of the DOE and the OBES. Part funding for the instrument used for this study came from the US Department of Energy, Office of Energy Efficiency & Renewable Energy, Solar Energy Technology Office BRIDGE Program. Resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231, were used in this work. LLNL is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration, under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. G. Tobin or Dimosthenis Sokaras.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobin, J.G., Nowak, S., Yu, S.W. et al. Direct measurement of 5f delocalization with U XES. MRS Bulletin 47, 1078–1083 (2022). https://doi.org/10.1557/s43577-022-00419-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00419-x

Keywords

Navigation