Abstract
The development of flexible memristor (MR) devices is a nascent research area with great potential to revolutionize wearable electronics. A few flexible MR devices with proven functionality and reliability have been introduced in the literature. This article describes the development of a novel paper MR device, named PrMem, employing a novel low-cost fabrication technique. PrMem consists of three layers: a top electrode, an active layer, and a bottom electrode. All three layers are made of the same materials, specifically, cellulose and reduced graphene oxide with different concentrations. Detailed I–V measurements are carried out to verify the resistive switching property of PrMem. Because the device is made entirely of paper, it is hydrophilic, which means that liquids may flow freely through its porous structure. This simple capillary action eliminates the need for additional mechanical pumping structures, making PrMem a promising candidate for a variety of applications. We are the first to report on the significant potential of flexible GO-based paper MR devices for emerging wearable electronics and sensing applications. Using only paper to make MR has the advantages of being low cost, flexible, effective, biocompatible, and conveniently disposable.
Impact statement
This article describes the first paper-based flexible graphene oxide memristor device with vertical stack configuration. Developed and reported is a novel, cost-effective fabrication technique for paper electronics. By oxidizing reduced graphene oxide, the fully paper device achieves memristive switching behavior. The devices exhibit analog switching behavior as they undergo a transition from a state of low resistance to a state of high resistance. The device’s resistance naturally returns to its initial state without the need for a RESET voltage. The reported findings open a new frontier for research into the use of paper-based memristor devices in a wide range of applications.
Graphical abstract

This is a preview of subscription content,
to check access.










Data availability
All data generated or analyzed during this study are included in this published article.
References
L.O. Chua, IEEE Trans. Circuit Theory 18(5), 507 (1971). https://doi.org/10.1109/TCT.1971.1083337
R. Waser, M. Aono, “Nanoionics-Based Resistive Switching Memories,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals, P. Rodgers, Ed. (Nature Publishing Group, 2009), pp. 158–165. https://doi.org/10.1142/9789814287005_0016
H. Abunahla, K. Humood, A. Alazzam, B. Mohammad, Flex. Print. Electron. 6, 35004 (2021). https://doi.org/10.1088/2058-8585/ac1501.
L. Qiao, M.R. Benzigar, J.A. Subramony, N.H. Lovell, G. Liu, ACS Appl. Mater. Interfaces 12(30), 34337 (2020). https://doi.org/10.1021/acsami.0c07614
A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A.C. Arias, J.M. Rabaey, Nat. Electron. 4, 54 (2021). https://doi.org/10.1038/s41928-020-00510-8
C. Demolder, A. Molina, F.L. Hammond III, W.-H. Yeo, Biosens. Bioelectron. 190, 113443 (2021). https://doi.org/10.1016/j.bios.2021.113443
S.-T. Han, H. Peng, Q. Sun. S. Venkatesh, K.-S. Chung, S.C. Lau, Y. Zhou, V.A.L. Roy, Adv. Mater. 29(33), 12 (2017). https://doi.org/10.1002/adma.201700375
M.-Z. Li, S.-T. Han, Y. Zhou, Adv. Intell. Syst. 2(11), 2000113 (2020). https://doi.org/10.1002/aisy.202000113
K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, A. Chiolerio, Nanotechnol. Sci. Appl. 9, 1 (2016). https://doi.org/10.2147/NSA.S68080
K. Rajan, S. Bocchini, A. Chiappone, I. Roppolo, D. Perrone, M. Castellino, K. Bejtka, M. Lorusso, C. Riccciardi, C.F. Pirri, A. Chiolerio, Flex. Print. Electron. 2, 024002 (2017). https://doi.org/10.1088/2058-8585/aa64be
B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou, Nanotechnol. Rev. 5(3), 311 (2016). https://doi.org/10.1515/ntrev-2015-0029
C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.-W. Li, Appl. Phys. Lett. 95, 232101 (2009). https://doi.org/10.1063/1.3271177
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon N. Y. 45(7), 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110(17), 8535 (2006)
M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Chem. A Eur. J. 15(25), 6116 (2009). https://doi.org/10.1002/chem.200900596
S. Pei, H.M. Cheng, Carbon N. Y. 50(9), 3210 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
A. Al-Shawi, M. Alias, P. Sayers, M.F. Mabrook, Micromachines 10(10), 643 (2019). https://doi.org/10.3390/mi10100643
Y. Cao, Y. Fu, D. Li, C. Zhu, B. Zhang, Y. Chen, Carbon N. Y. 141, 758 (2019). https://doi.org/10.1016/j.carbon.2018.09.064
V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, Angew. Chem. Int. Ed. 49(12), 2154 (2010). https://doi.org/10.1002/anie.200905089
F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, ACS Nano 6(4), 2992 (2012). https://doi.org/10.1021/nn2044609
R.B. Church, K. Hu, G. Magnacca, M. Cerruti, ACS Appl. Nano Mater. 2(9), 5389 (2019). https://doi.org/10.1021/acsanm.9b00873
S. Chun, W. Son, D.W. Kim, J. Lee, H. Min. H. Jung, D. Kwon, A.-H. Kim, Y.-J. Kim, S.K. Lim, C. Pang, C. Choi, ACS Appl Mater. Interfaces 11(18), 16951 (2019). https://doi.org/10.1021/acsami.9b04206
H. Bae, D. Kim, M. Seo, I.K. Jin, S.-B. Jeon, H.M. Lee, S.-H. Jung, B.C. Jang, G. Son, K. Yu, S-Y. Choi, Y.-K. Choi, Adv. Mater. Technol. 4(8), 1900151 (2019). https://doi.org/10.1002/admt.201900151
L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc. 131(31), 11027 (2009). https://doi.org/10.1021/ja902348k
S. De, P.J. King, M. Lotya, A. O'Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Small 6(3), 458 (2010). https://doi.org/10.1002/smll.200901162
V.H. Pham, T.V. Cuong, S.H. Hur, E.W. Shin, J.S. Kim, J.S. Chung, E.J. Kim, Carbon N. Y. 48(7), 1945 (2010). https://doi.org/10.1016/j.carbon.2010.01.062
N.-W. Pu, C.-A. Wang, Y.-M. Liu, Y. Sung, D. Wang, M.-D. Ger, J. Taiwan Inst. Chem. Eng. 43, 140–146 (2012)
A. Alazzam, Nanotechnology 31, 75302 (2020). https://doi.org/10.1088/1361-6528/ab50ee
H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.-E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. KIim, R.S. Ruoff, S.-Y. Choi, Nano Lett. 10(11), 4381 (2010). https://doi.org/10.1021/nl101902k
L-.H. Wang, W. Yang, Q.-Q. Sun, P. Zhou, H.-L. Lu, S.-J. Ding, D.W. Zhang, Appl. Phys. Lett. 100(6), 063509 (2012). https://doi.org/10.1063/1.3681366
A. Midya, N. Gogurla, S.K. Ray, Curr. Appl. Phys. 15(6), 706 (2015). https://doi.org/10.1016/j.cap.2015.03.008
S.K. Hong, J.E. Kim, S.O. Kim, S.Y. Choi, B.J. Cho, IEEE Electron Device Lett. 31, 1005 (2010). https://doi.org/10.1109/LED.2010.2053695
T. Liu, W. Wu, K.-N. Liao, Q. Sun, X. Gong, V.A.L. Roy, Z.-Z. Yu, R.K.Y. Li, Carbohydr. Polym. 214, 213 (2019). https://doi.org/10.1016/j.carbpol.2019.03.040
H. Abunahla, Y. Halawani, A. Alazzam, B. Mohammad, Sci. Rep. 10, 9473 (2020). https://doi.org/10.1038/s41598-020-66413-y
H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, ACS Appl. Mater. Interfaces 12(28), 31037 (2020). https://doi.org/10.1021/acsami.0c06435
R.S. Rajaura, S. Srivastava, V. Sharma, P.K. Sharma, C. Lal, M. Singh, H.S. Palsania, Y.K. Vijay, Int. J. Hydrogen Energy 41(22), 9454 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.115
S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Biotechnol. Biofuels Bioprod. 3, 10 (2010). https://doi.org/10.1186/1754-6834-3-10
W.H.W. Ishak, I. Ahmad, S. Ramli, M.C.I.M. Amin, Nanomaterials (Basel) 8(10), 749 (2018). https://doi.org/10.3390/nano8100749
J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, J. Mater. Chem. 21, 3415 (2011). https://doi.org/10.1039/c0jm03542d
X. Jiao, Y. Qiu, L. Zhang, X. Zhang, RSC Adv. 7, 52337 (2017). https://doi.org/10.1039/c7ra10809e
W. Liu, G. Speranza, ACS Omega 6, 6195 (2021). https://doi.org/10.1021/acsomega.0c05578
V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 193, 49 (2015). https://doi.org/10.1016/j.mseb.2014.11.002
S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008 (2013). https://doi.org/10.1109/TCSI.2013.2256171
F.J. Romero, A. Toral, A. Medina-Rull, C.L. Moraila-Martinez, D.P. Morales, A. Ohata, A. Godoy, F.G. Ruiz, N. Rodriguez, Front. Mater. 7, 1 (2020). https://doi.org/10.3389/fmats.2020.00017
M. Abujabal, H. Abunahla, B. Mohammad, A. Alazzam, Nanomaterials (Basel) 12(11), 1812 (2022)
D.B. Strukov, F. Alibart, R. Stanley Williams, Appl. Phys. A Mater. Sci. Process. 107, 509 (2012). https://doi.org/10.1007/s00339-012-6902-x
S. Fatima, X. Bin, M.A. Mohammad, D. Akinwande, S. Rizwan, Adv. Electron. Mater. 8, 11 (2022). https://doi.org/10.1002/aelm.202100549
S. Mao, X. Zhang, B. Sun, B. Li, T. Yu, Y. Chen, Y. Zhao, Electron. Mater. Lett. 15(5), 547 (2019). https://doi.org/10.1007/s13391-019-00150-x
M. Di Ventra, Y.V. Pershin, L.O. Chua, “Circuit Elements with Memory: Memristors, Memcapacitors, and Meminductors,” Proc. IEEE 97(10), 1717 (2009)
H. Abunahla, B. Mohammad, Y. Abbas, A. Alazzam, Mater. Des. 210, 110077 (2021). https://doi.org/10.1016/j.matdes.2021.110077
Y. Li, J. Chu, W. Duan, G. Cai, X. Fan, X. Wang, G. Wang, Y. Pei, ACS Appl. Mater. Interfaces 10(29), 24598 (2018). https://doi.org/10.1021/acsami.8b05749
F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Mater. Sci. Eng. R Rep. 83(1), 1 (2014). https://doi.org/10.1016/j.mser.2014.06.002
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010). https://doi.org/10.1021/nl904092h
T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J.K. Gimzewski, M. Aono, Adv. Mater. 22(16), 1831 (2010). https://doi.org/10.1002/adma.200903680
T. Chang, S.H. Jo, W. Lu, ACS Nano 5, 7669 (2011). https://doi.org/10.1021/nn202983n
H. Li, Y. Xia, B. Xu, H. Guo, J. Yin, Z. Liu, Appl. Phys. Lett. 97(1), 012902 (2010). https://doi.org/10.1063/1.3462067
L. Chen, C. Li, T. Huang, Y. Chen, S. Wen, J. Qi, Phys. Lett. A 377, 3260 (2013). https://doi.org/10.1016/j.physleta.2013.10.024
H. Ryu, S. Kim, Metals (Basel) 11(8), 1207 (2021). https://doi.org/10.3390/met11081207
Q. Chen, M. Lin. Z. Wang, X. Zhao, Y. Cai, Q. Liu, Y. Fang, Y. Yang, M. He, R. Huang, Adv. Electron. Mater. 5(9), 1800852 (2019). https://doi.org/10.1002/aelm.201800852.
C.-C. Lin, Y.-D. Chen, N.-C. Lin, IEEE International Symposium on Next-Generation Electronics (ISNE 2013) (IEEE, Kaohsiung, Taiwan, February 25–26, 2013), pp. 396–398. https://doi.org/10.1109/ISNE.2013.6512377
F. Yuan, Y.-R. Ye, J.-C. Wang, Z. Zhang, L. Pan, J. Xu, C.-S. Lai, “Retention behavior of graphene oxide resistive switching memory on flexible substrate,” in 2013 IEEE 5th International Nanoelectronics Conference (INEC) (2013), pp. 288–290. https://doi.org/10.1109/INEC.2013.6466025.
F. Zhao, H. Cheng, Y. Hu, L. Song, Z. Zhang, L. Jiang, L. Qu, Sci. Rep. 4, 5882 (2014). https://doi.org/10.1038/srep05882
Z. Zhou, F. Xiu, T. Jiang, J. Xu, J. Chen, J. Liu, W. Huang, J. Mater. Chem. C 7(35), 10764 (2019). https://doi.org/10.1039/c9tc03840j
Acknowledgments
This publication is based upon work supported by the Khalifa University of Science and Technology under Award No. [RC2-2018-020].
Author information
Authors and Affiliations
Contributions
A.A. and N.A. conceived of the presented idea and supervised the work. A.C. carried out the experiments and performed the analysis with feedback from all other authors. H.A. planned and assisted the electrical characterization experiments. B.M. secured the funding. A.C. wrote the original manuscript with feedback from all other authors. All authors discussed the results and contributed to the final manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that there are no competing interests.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chaim, A., Abunahla, H., Mohammad, B. et al. PrMem: Novel flexible biodegradable paper-graphene oxide-based memristor. MRS Bulletin 48, 214–227 (2023). https://doi.org/10.1557/s43577-022-00390-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43577-022-00390-7