Skip to main content
Log in

PrMem: Novel flexible biodegradable paper-graphene oxide-based memristor

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The development of flexible memristor (MR) devices is a nascent research area with great potential to revolutionize wearable electronics. A few flexible MR devices with proven functionality and reliability have been introduced in the literature. This article describes the development of a novel paper MR device, named PrMem, employing a novel low-cost fabrication technique. PrMem consists of three layers: a top electrode, an active layer, and a bottom electrode. All three layers are made of the same materials, specifically, cellulose and reduced graphene oxide with different concentrations. Detailed I–V measurements are carried out to verify the resistive switching property of PrMem. Because the device is made entirely of paper, it is hydrophilic, which means that liquids may flow freely through its porous structure. This simple capillary action eliminates the need for additional mechanical pumping structures, making PrMem a promising candidate for a variety of applications. We are the first to report on the significant potential of flexible GO-based paper MR devices for emerging wearable electronics and sensing applications. Using only paper to make MR has the advantages of being low cost, flexible, effective, biocompatible, and conveniently disposable.

Impact statement

This article describes the first paper-based flexible graphene oxide memristor device with vertical stack configuration. Developed and reported is a novel, cost-effective fabrication technique for paper electronics. By oxidizing reduced graphene oxide, the fully paper device achieves memristive switching behavior. The devices exhibit analog switching behavior as they undergo a transition from a state of low resistance to a state of high resistance. The device’s resistance naturally returns to its initial state without the need for a RESET voltage. The reported findings open a new frontier for research into the use of paper-based memristor devices in a wide range of applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. L.O. Chua, IEEE Trans. Circuit Theory 18(5), 507 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. R. Waser, M. Aono, “Nanoionics-Based Resistive Switching Memories,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals, P. Rodgers, Ed. (Nature Publishing Group, 2009), pp. 158–165. https://doi.org/10.1142/9789814287005_0016

    Article  Google Scholar 

  3. H. Abunahla, K. Humood, A. Alazzam, B. Mohammad, Flex. Print. Electron. 6, 35004 (2021). https://doi.org/10.1088/2058-8585/ac1501.

  4. L. Qiao, M.R. Benzigar, J.A. Subramony, N.H. Lovell, G. Liu, ACS Appl. Mater. Interfaces 12(30), 34337 (2020). https://doi.org/10.1021/acsami.0c07614

    Article  CAS  Google Scholar 

  5. A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A.C. Arias, J.M. Rabaey, Nat. Electron. 4, 54 (2021). https://doi.org/10.1038/s41928-020-00510-8

    Article  Google Scholar 

  6. C. Demolder, A. Molina, F.L. Hammond III, W.-H. Yeo, Biosens. Bioelectron. 190, 113443 (2021). https://doi.org/10.1016/j.bios.2021.113443

    Article  Google Scholar 

  7. S.-T. Han, H. Peng, Q. Sun. S. Venkatesh, K.-S. Chung, S.C. Lau, Y. Zhou, V.A.L. Roy, Adv. Mater. 29(33), 12 (2017). https://doi.org/10.1002/adma.201700375

    Article  CAS  Google Scholar 

  8. M.-Z. Li, S.-T. Han, Y. Zhou, Adv. Intell. Syst. 2(11), 2000113 (2020). https://doi.org/10.1002/aisy.202000113

    Article  Google Scholar 

  9. K. Rajan, I. Roppolo, A. Chiappone, S. Bocchini, D. Perrone, A. Chiolerio, Nanotechnol. Sci. Appl. 9, 1 (2016). https://doi.org/10.2147/NSA.S68080

    Article  CAS  Google Scholar 

  10. K. Rajan, S. Bocchini, A. Chiappone, I. Roppolo, D. Perrone, M. Castellino, K. Bejtka, M. Lorusso, C. Riccciardi, C.F. Pirri, A. Chiolerio, Flex. Print. Electron. 2, 024002 (2017). https://doi.org/10.1088/2058-8585/aa64be

    Article  Google Scholar 

  11. B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou, Nanotechnol. Rev. 5(3), 311 (2016). https://doi.org/10.1515/ntrev-2015-0029

    Article  CAS  Google Scholar 

  12. C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.-W. Li, Appl. Phys. Lett. 95, 232101 (2009). https://doi.org/10.1063/1.3271177

    Article  Google Scholar 

  13. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon N. Y. 45(7), 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  14. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110(17), 8535 (2006)

  15. M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Chem. A Eur. J. 15(25), 6116 (2009). https://doi.org/10.1002/chem.200900596

    Article  CAS  Google Scholar 

  16. S. Pei, H.M. Cheng, Carbon N. Y. 50(9), 3210 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  17. A. Al-Shawi, M. Alias, P. Sayers, M.F. Mabrook, Micromachines 10(10), 643 (2019). https://doi.org/10.3390/mi10100643

    Article  Google Scholar 

  18. Y. Cao, Y. Fu, D. Li, C. Zhu, B. Zhang, Y. Chen, Carbon N. Y. 141, 758 (2019). https://doi.org/10.1016/j.carbon.2018.09.064

    Article  CAS  Google Scholar 

  19. V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, Angew. Chem. Int. Ed. 49(12), 2154 (2010). https://doi.org/10.1002/anie.200905089

    Article  CAS  Google Scholar 

  20. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, ACS Nano 6(4), 2992 (2012). https://doi.org/10.1021/nn2044609

    Article  CAS  Google Scholar 

  21. R.B. Church, K. Hu, G. Magnacca, M. Cerruti, ACS Appl. Nano Mater. 2(9), 5389 (2019). https://doi.org/10.1021/acsanm.9b00873

    Article  CAS  Google Scholar 

  22. S. Chun, W. Son, D.W. Kim, J. Lee, H. Min. H. Jung, D. Kwon, A.-H. Kim, Y.-J. Kim, S.K. Lim, C. Pang, C. Choi, ACS Appl Mater. Interfaces 11(18), 16951 (2019). https://doi.org/10.1021/acsami.9b04206

    Article  CAS  Google Scholar 

  23. H. Bae, D. Kim, M. Seo, I.K. Jin, S.-B. Jeon, H.M. Lee, S.-H. Jung, B.C. Jang, G. Son, K. Yu, S-Y. Choi, Y.-K. Choi, Adv. Mater. Technol. 4(8), 1900151 (2019). https://doi.org/10.1002/admt.201900151

    Article  CAS  Google Scholar 

  24. L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc. 131(31), 11027 (2009). https://doi.org/10.1021/ja902348k

    Article  CAS  Google Scholar 

  25. S. De, P.J. King, M. Lotya, A. O'Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Small 6(3), 458 (2010). https://doi.org/10.1002/smll.200901162

    Article  CAS  Google Scholar 

  26. V.H. Pham, T.V. Cuong, S.H. Hur, E.W. Shin, J.S. Kim, J.S. Chung, E.J. Kim, Carbon N. Y. 48(7), 1945 (2010). https://doi.org/10.1016/j.carbon.2010.01.062

    Article  CAS  Google Scholar 

  27. N.-W. Pu, C.-A. Wang, Y.-M. Liu, Y. Sung, D. Wang, M.-D. Ger, J. Taiwan Inst. Chem. Eng. 43, 140–146 (2012)

    Article  CAS  Google Scholar 

  28. A. Alazzam, Nanotechnology 31, 75302 (2020). https://doi.org/10.1088/1361-6528/ab50ee

    Article  CAS  Google Scholar 

  29. H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.-E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. KIim, R.S. Ruoff, S.-Y. Choi, Nano Lett. 10(11), 4381 (2010). https://doi.org/10.1021/nl101902k

    Article  CAS  Google Scholar 

  30. L-.H. Wang, W. Yang, Q.-Q. Sun, P. Zhou, H.-L. Lu, S.-J. Ding, D.W. Zhang, Appl. Phys. Lett. 100(6), 063509 (2012). https://doi.org/10.1063/1.3681366

    Article  CAS  Google Scholar 

  31. A. Midya, N. Gogurla, S.K. Ray, Curr. Appl. Phys. 15(6), 706 (2015). https://doi.org/10.1016/j.cap.2015.03.008

    Article  Google Scholar 

  32. S.K. Hong, J.E. Kim, S.O. Kim, S.Y. Choi, B.J. Cho, IEEE Electron Device Lett. 31, 1005 (2010). https://doi.org/10.1109/LED.2010.2053695

    Article  CAS  Google Scholar 

  33. T. Liu, W. Wu, K.-N. Liao, Q. Sun, X. Gong, V.A.L. Roy, Z.-Z. Yu, R.K.Y. Li, Carbohydr. Polym. 214, 213 (2019). https://doi.org/10.1016/j.carbpol.2019.03.040

    Article  CAS  Google Scholar 

  34. H. Abunahla, Y. Halawani, A. Alazzam, B. Mohammad, Sci. Rep. 10, 9473 (2020). https://doi.org/10.1038/s41598-020-66413-y

    Article  CAS  Google Scholar 

  35. H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, ACS Appl. Mater. Interfaces 12(28), 31037 (2020). https://doi.org/10.1021/acsami.0c06435

    Article  CAS  Google Scholar 

  36. R.S. Rajaura, S. Srivastava, V. Sharma, P.K. Sharma, C. Lal, M. Singh, H.S. Palsania, Y.K. Vijay, Int. J. Hydrogen Energy 41(22), 9454 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.115

    Article  CAS  Google Scholar 

  37. S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Biotechnol. Biofuels Bioprod. 3, 10 (2010). https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  38. W.H.W. Ishak, I. Ahmad, S. Ramli, M.C.I.M. Amin, Nanomaterials (Basel) 8(10), 749 (2018). https://doi.org/10.3390/nano8100749

    Article  CAS  Google Scholar 

  39. J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, J. Mater. Chem. 21, 3415 (2011). https://doi.org/10.1039/c0jm03542d

    Article  CAS  Google Scholar 

  40. X. Jiao, Y. Qiu, L. Zhang, X. Zhang, RSC Adv. 7, 52337 (2017). https://doi.org/10.1039/c7ra10809e

    Article  CAS  Google Scholar 

  41. W. Liu, G. Speranza, ACS Omega 6, 6195 (2021). https://doi.org/10.1021/acsomega.0c05578

    Article  CAS  Google Scholar 

  42. V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 193, 49 (2015). https://doi.org/10.1016/j.mseb.2014.11.002

    Article  CAS  Google Scholar 

  43. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008 (2013). https://doi.org/10.1109/TCSI.2013.2256171

    Article  Google Scholar 

  44. F.J. Romero, A. Toral, A. Medina-Rull, C.L. Moraila-Martinez, D.P. Morales, A. Ohata, A. Godoy, F.G. Ruiz, N. Rodriguez, Front. Mater. 7, 1 (2020). https://doi.org/10.3389/fmats.2020.00017

    Article  Google Scholar 

  45. M. Abujabal, H. Abunahla, B. Mohammad, A. Alazzam, Nanomaterials (Basel) 12(11), 1812 (2022)

  46. D.B. Strukov, F. Alibart, R. Stanley Williams, Appl. Phys. A Mater. Sci. Process. 107, 509 (2012). https://doi.org/10.1007/s00339-012-6902-x

    Article  CAS  Google Scholar 

  47. S. Fatima, X. Bin, M.A. Mohammad, D. Akinwande, S. Rizwan, Adv. Electron. Mater. 8, 11 (2022). https://doi.org/10.1002/aelm.202100549

    Article  CAS  Google Scholar 

  48. S. Mao, X. Zhang, B. Sun, B. Li, T. Yu, Y. Chen, Y. Zhao, Electron. Mater. Lett. 15(5), 547 (2019). https://doi.org/10.1007/s13391-019-00150-x

    Article  CAS  Google Scholar 

  49. M. Di Ventra, Y.V. Pershin, L.O. Chua, “Circuit Elements with Memory: Memristors, Memcapacitors, and Meminductors,” Proc. IEEE 97(10), 1717 (2009)

  50. H. Abunahla, B. Mohammad, Y. Abbas, A. Alazzam, Mater. Des. 210, 110077 (2021). https://doi.org/10.1016/j.matdes.2021.110077

    Article  Google Scholar 

  51. Y. Li, J. Chu, W. Duan, G. Cai, X. Fan, X. Wang, G. Wang, Y. Pei, ACS Appl. Mater. Interfaces 10(29), 24598 (2018). https://doi.org/10.1021/acsami.8b05749

    Article  CAS  Google Scholar 

  52. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Mater. Sci. Eng. R Rep. 83(1), 1 (2014). https://doi.org/10.1016/j.mser.2014.06.002

    Article  Google Scholar 

  53. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010). https://doi.org/10.1021/nl904092h

    Article  CAS  Google Scholar 

  54. T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J.K. Gimzewski, M. Aono, Adv. Mater. 22(16), 1831 (2010). https://doi.org/10.1002/adma.200903680

    Article  CAS  Google Scholar 

  55. T. Chang, S.H. Jo, W. Lu, ACS Nano 5, 7669 (2011). https://doi.org/10.1021/nn202983n

    Article  CAS  Google Scholar 

  56. H. Li, Y. Xia, B. Xu, H. Guo, J. Yin, Z. Liu, Appl. Phys. Lett. 97(1), 012902 (2010). https://doi.org/10.1063/1.3462067

    Article  CAS  Google Scholar 

  57. L. Chen, C. Li, T. Huang, Y. Chen, S. Wen, J. Qi, Phys. Lett. A 377, 3260 (2013). https://doi.org/10.1016/j.physleta.2013.10.024

    Article  CAS  Google Scholar 

  58. H. Ryu, S. Kim, Metals (Basel) 11(8), 1207 (2021). https://doi.org/10.3390/met11081207

    Article  Google Scholar 

  59. Q. Chen, M. Lin. Z. Wang, X. Zhao, Y. Cai, Q. Liu, Y. Fang, Y. Yang, M. He, R. Huang, Adv. Electron. Mater. 5(9), 1800852 (2019). https://doi.org/10.1002/aelm.201800852.

  60. C.-C. Lin, Y.-D. Chen, N.-C. Lin, IEEE International Symposium on Next-Generation Electronics (ISNE 2013) (IEEE, Kaohsiung, Taiwan, February 25–26, 2013), pp. 396–398. https://doi.org/10.1109/ISNE.2013.6512377

    Article  Google Scholar 

  61. F. Yuan, Y.-R. Ye, J.-C. Wang, Z. Zhang, L. Pan, J. Xu, C.-S. Lai, “Retention behavior of graphene oxide resistive switching memory on flexible substrate,” in 2013 IEEE 5th International Nanoelectronics Conference (INEC) (2013), pp. 288–290. https://doi.org/10.1109/INEC.2013.6466025.

  62. F. Zhao, H. Cheng, Y. Hu, L. Song, Z. Zhang, L. Jiang, L. Qu, Sci. Rep. 4, 5882 (2014). https://doi.org/10.1038/srep05882

    Article  CAS  Google Scholar 

  63. Z. Zhou, F. Xiu, T. Jiang, J. Xu, J. Chen, J. Liu, W. Huang, J. Mater. Chem. C 7(35), 10764 (2019). https://doi.org/10.1039/c9tc03840j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication is based upon work supported by the Khalifa University of Science and Technology under Award No. [RC2-2018-020].

Author information

Authors and Affiliations

Authors

Contributions

A.A. and N.A. conceived of the presented idea and supervised the work. A.C. carried out the experiments and performed the analysis with feedback from all other authors. H.A. planned and assisted the electrical characterization experiments. B.M. secured the funding. A.C. wrote the original manuscript with feedback from all other authors. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Nahla Alamoodi or Anas Alazzam.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaim, A., Abunahla, H., Mohammad, B. et al. PrMem: Novel flexible biodegradable paper-graphene oxide-based memristor. MRS Bulletin 48, 214–227 (2023). https://doi.org/10.1557/s43577-022-00390-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00390-7

Keywords

Navigation