Skip to main content

Ultralight supertetrahedral aluminum: Stability at various temperatures

Abstract

Ab initio molecular dynamics simulations of the structural stability of the allotropic supertetrahedral ultralight form of aluminum at different temperatures have shown that supertetrahedral aluminum remains structurally stable up to the temperature of 200 K. When being heated to 225 K, supertetrahedral aluminum melts, followed by a liquid-to-solid phase transition and formation of the face-centered-cubic (fcc) structure. The transformation of supertetrahedral aluminum into fcc aluminum is accompanied by an energy release of 4260 kJ/kg. Taking into account its stability at temperatures below 200 K, supertetrahedral aluminum would not float in water because water is solid at this temperature, but it would float in liquid nitrogen.

Impact statement

Recently predicted novel allotropic modification of aluminum—supertetrahedral aluminum brought worldwide attention in both the scientific community and the press. This new material constructed from Al4 tetrahedra is predicted to be a very light solid with a density equal to 0.61 g/cm3. Such material is of particular interest to scientific and engineering communities due to its various potential applications because it is a metal and at the same time it has extremely low density. Moreover, this material could guide the design of other new ultralight materials.

In this article, we conducted a long ab initio molecular dynamics simulation (up to 325 ps) at various temperatures and showed that ultralight supertetrahedral aluminum remains structurally stable up to the temperature of 200 K according to our calculations. This is a reasonably high temperature for experimental verification of this remarkable material, which is lighter than water. At higher temperature (225 K) supertetrahedral aluminum melts, followed by a liquid-to-solid phase transition and formation of the face-centered-cubic structure.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Data availability

Additional data that support the findings of this study are available from the corresponding authors on request.

References

  1. A. Gupta, T. Sakthivel, S. Seal, S. Prog, Mater. Sci. 73, 44 (2015)

    CAS  Google Scholar 

  2. Z. Li, Z. Liu, H. Sun, C. Ga, Chem. Rev. 115, 7046 (2015)

    CAS  Article  Google Scholar 

  3. N. Karousis, I. Suarez-Martinez, C.P. Ewels, N. Tagmatarchis, Chem. Rev. 116, 4850 (2016)

    CAS  Article  Google Scholar 

  4. Z. Lin, Acc. Chem. Res. 43, 602 (2010)

    CAS  Article  Google Scholar 

  5. M.D. Ben, J. Hutter, J. VandeVondele, J. Chem. Theory Comput. 8, 4177 (2012)

    Article  CAS  Google Scholar 

  6. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    CAS  Article  Google Scholar 

  7. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)

    CAS  Article  Google Scholar 

  8. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  CAS  Google Scholar 

  9. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev. 115, 4744 (2015)

    CAS  Article  Google Scholar 

  10. R.B. Heimann, S.E. Evsvukov, Y. Koga, Carbon 35, 1654 (1997)

    CAS  Article  Google Scholar 

  11. P. Jena, Q. Sun, Chem. Rev. 118, 5755 (2018)

    CAS  Article  Google Scholar 

  12. N.V. Tkachenko, D. Steglenko, N. Fedik, N.M. Boldyreva, R.M. Minyaev, V.I. Minkin, A.I. Boldyrev, Phys. Chem. Chem. Phys. 21, 19764 (2019)

    CAS  Article  Google Scholar 

  13. D.V. Steglenko, N.V. Tkachenko, A.I. Boldyrev, R.M. Minyaev, V.I. Minkin, J. Comput. Chem. 41, 1456 (2020)

    CAS  Article  Google Scholar 

  14. J.K. Burdett, S. Lee, J. Am. Chem. Soc. 107, 3063 (1985)

    CAS  Article  Google Scholar 

  15. R.J. Johnston, R. Hoffmann, J. Am. Chem. Soc. 111, 810 (1989)

    CAS  Article  Google Scholar 

  16. P. Miró, M. Audiffred, T. Heine, Chem. Soc. Rev. 43, 6537 (2014)

    Article  Google Scholar 

  17. J. Neugebauer, T. Hickel, WIREs Comput. Mol. Sci. 3, 438 (2013)

    CAS  Article  Google Scholar 

  18. I.V. Getmanskii, R.M. Minyaev, D.V. Steglenko, V.V. Koval, S.A. Zaitsev, V.I. Minkin, Angew. Chem. Int. Ed. 56, 10118 (2017)

    CAS  Article  Google Scholar 

  19. R. Haunschild, G. Frenking, Mol. Phys. 107, 911 (2009)

    CAS  Article  Google Scholar 

  20. R.M. Minyaev, I.A. Popov, V.V. Koval, A.I. Boldyrev, V.I. Minkin, Struct. Chem. 26, 223 (2015)

    CAS  Article  Google Scholar 

  21. I.V. Getmanskii, V.V. Koval, R.M. Minyaev, A.I. Boldyrev, V.I. Minkin, J. Phys. Chem. C 121, 22187 (2017)

    CAS  Article  Google Scholar 

  22. J.A. Bearden, Phys. Rev. 29, 20 (1927)

    CAS  Article  Google Scholar 

  23. P.N.H. Nakashima, A.E. Smith, J. Etheridge, B.C. Muddle, Science 331, 1583 (2011)

    CAS  Article  Google Scholar 

  24. P.N.H. Nakashima, Struct. Chem. 28, 1319 (2017)

    CAS  Article  Google Scholar 

  25. P.N.H. Nakashima, "The Crystallography of Aluminum and Its Alloys," in Encyclopedia of Aluminum and Its Alloys (CRC Press, Boca Raton, FL, 2018), pp. 488–586

    Google Scholar 

  26. T. Sasaki, H. Kasai, E. Nishibori, Sci. Rep. 8, 11964 (2018)

    Article  CAS  Google Scholar 

  27. D.Yu. Zubarev, A.I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008)

    CAS  Article  Google Scholar 

  28. N.V. Tkachenko, A.I. Boldyrev, Phys. Chem. Chem. Phys. 21, 9590 (2019)

    CAS  Article  Google Scholar 

  29. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    CAS  Article  Google Scholar 

  30. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    CAS  Article  Google Scholar 

  31. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    CAS  Article  Google Scholar 

  32. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    CAS  Article  Google Scholar 

  33. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  34. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    CAS  Article  Google Scholar 

  35. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  CAS  Google Scholar 

  36. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  37. M. Parrinello, A. Rahman, Phys. Rev. Lett. 45, 1196 (1980)

    CAS  Article  Google Scholar 

  38. A. Rahman, M. Parrinello, J. Appl. Phys. 52, 7182 (1981)

    Article  Google Scholar 

  39. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1991)

    Google Scholar 

  40. T.R. Galeev, B.D. Dunnington, J.R. Schmidt, A.I. Boldyrev, Phys. Chem. Chem. Phys. 15, 5022 (2013)

    CAS  Article  Google Scholar 

  41. B.D. Dunnington, J.R. Schmidt, J. Chem. Theory Comput. 2012, 8 (1902)

    Google Scholar 

  42. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    CAS  Article  Google Scholar 

  43. P. Rublev, N.V. Tkachenko, A.I. Boldyrev, J. Comput. Chem. (2022). https://doi.org/10.1002/jcc.26854

    Article  Google Scholar 

  44. M. Kulichenko, A.I. Boldyrev, J. Phys. Chem. C 124, 6267 (2020)

    CAS  Article  Google Scholar 

  45. N.V. Tkachenko, B. Song, D. Steglenko, R.M. Minyaev, L.-M. Yang, A.I. Boldyrev, Phys. Status Solidi B 257, 1900619 (2020)

    CAS  Article  Google Scholar 

  46. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2016)

  47. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Article  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    CAS  Article  Google Scholar 

  49. M. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    CAS  Article  Google Scholar 

  50. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  51. G.A. Zhurko, Chemcraft - Graphical Program for Visualization of Quantum Chemistry Computations (Ivanovo, Russia, 2005). https://chemcraftprog.com

  52. D.R. Lide, Ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2003)

    Google Scholar 

  53. R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience Publishers, New York, 1963), p. 7

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, Southern Federal University, No. 0852-2020-0019). A.I.B. acknowledges financial support from the R. Gaurth Hansen Professorship fund. The support and resources from the Center for High Performance Computing at The University of Utah are gratefully acknowledged.

Funding

Funding was provided by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 0852-2020-0019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander I. Boldyrev or Ruslan M. Minyaev.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1500 KB)

Supplementary file2 (MP4 417239 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Getmanskii, I.V., Koval, V.V., Tkachenko, N.V. et al. Ultralight supertetrahedral aluminum: Stability at various temperatures. MRS Bulletin (2022). https://doi.org/10.1557/s43577-022-00383-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-022-00383-6

Keywords

  • Computer modeling of melting
  • Metallic chemical bond
  • Multicenter chemical bond
  • Solid-state calculations
  • Supertetrahedral aluminum