Skip to main content
Log in

Spin-dependent tunneling in 2D MnBi2Te4-based magnetic tunnel junctions

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Magnetic tunnel junctions (MTJs) with ferromagnetic (FM) and/or antiferromagnetic (AFM) materials have attracted wide interest for their promising application in spintronic devices. Recently, many discovered two-dimensional (2D) magnetic materials offer a flexible platform to design switchable layered FM/AFM MTJs. By using the first-principles quantum transport simulations, we designed the MTJs based on 2D van der Waals layered MnBi\(_2\)Te\(_4\) and studied the spin-dependent electronic and transport properties of the MTJs with the different thickness MnBi\(_2\)Te\(_4\) as well as their FM and AFM configurations. As the increment of MnBi\(_2\)Te\(_4\) layers, our results show that there is a higher spin polarization and the tunnel magnetoresistance (TMR) ratio at the Fermi level correspondingly increases: 100% and 500%. In particular, when the spin–orbit coupling (SOC) is accounted, the TMR ratio can be enhanced to 500% and 4000%, indicating the SOC effect can lead to the performance improvement of MnBi\(_2\)Te\(_4\)-based MTJs.

Impact statement

For Moore’s Law to continue to work, there is an urgent demand to find new principles, new materials, and more concepts for future devices. Among them, spintronics has exhibited great potential due to its excellent performance. A typical widely used device is the magnetic tunnel junction (MTJ) in spintronics. Recently, more and more MTJs based on discovered two-dimensional magnetic materials have been predicted with higher tunnel magnetoresistance (TMR). As the first magnetic topological materials, MnBi2Te4 hold various magnetic states and thickness-dependent properties rather than single ferromagnetic states, and there are more possibilities to design versatile MTJ devices. Here, we construct the magnetic tunnel junctions based on MnBi2Te4 with Cu as the electrode: Cu/n-Layer-MnBi2Te4/Cu (n = 1, 2, 3, 4) device. Based on density functional theory and nonequilibrium Green’s function, we found that with the thickening of the MnBi2Te4 layers, the spin filtering of MnBi2Te4 is more apparent, where the TMR value at the Fermi level is 100%, 200%, and 500% for n = 2, 3, 4 in Cu/n-Layer-MnBi2Te4/Cu devices, respectively. In particular, when the spin–orbit coupling (SOC) is accounted, the TMR ratio can be enhanced to 500%, 4000% for n = 2, 4, indicating the SOC effect can lead to the performance improvement of MnBi2Te4-based MTJs. We believe that our results can motivate further studies on MnBi2Te4-based MTJs for future spintronics devices.

Graphical abstract

Schematic view of MnBi2Te4-based device model. The maximum tunnel magnetoresistance (TMR) ratio and the TMR ratio at the Fermi level in Cu/2(4)L-MBT/Cu magnetic tunnel junctions without and with spin–orbit coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M. Julliere, Phys. Lett. A 54, 225 (1975). https://doi.org/10.1016/0375-9601(75)90174-7

    Article  Google Scholar 

  2. T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995). https://doi.org/10.1016/0304-8853(95)90001-2

    Article  CAS  Google Scholar 

  3. J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). https://doi.org/10.1103/PhysRevLett.74.3273

    Article  CAS  Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294(5546), 1488 (2001). https://doi.org/10.1126/science.1065389

    Article  CAS  Google Scholar 

  5. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 3, 868 (2004). https://doi.org/10.1038/nmat1257

    Article  CAS  Google Scholar 

  6. T. Marukame, T. Kasahara, K.-I. Matsuda, T. Uemura, M. Yamamoto, IEEE Trans. Magn. 41, 2603 (2005). https://doi.org/10.1109/TMAG.2005.854716

    Article  CAS  Google Scholar 

  7. D.D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, K. Ando, Appl. Phys. Lett. 86, 092502 (2005). https://doi.org/10.1063/1.1871344

    Article  CAS  Google Scholar 

  8. M. Oogane, Y. Sakuraba, J. Nakata, H. Kubota, Y. Ando, A. Sakuma, T. Miyazaki, J. Phys. D 39, 834 (2006). https://doi.org/10.1088/0022-3727/39/5/S09

    Article  CAS  Google Scholar 

  9. H.X. Wei, Q.H. Qin, M. Ma, R. Sharif, X.F. Han, J. Appl. Phys. 101, 09B501 (2007). https://doi.org/10.1063/1.2696590

    Article  CAS  Google Scholar 

  10. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 93, 082508 (2008). https://doi.org/10.1063/1.2976435

    Article  CAS  Google Scholar 

  11. S. Tsunegi, Y. Sakuraba, M. Oogane, K. Takanashi, Y. Ando, Appl. Phys. Lett. 93, 112506 (2008). https://doi.org/10.1063/1.2987516

    Article  CAS  Google Scholar 

  12. L. Jiang, H. Naganuma, M. Oogane, Y. Ando, Appl. Phys. Express 2, 083002 (2009). https://doi.org/10.1143/APEX.2.083002

    Article  CAS  Google Scholar 

  13. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, Nat. Mater. 9, 721 (2010). https://doi.org/10.1038/nmat2804

    Article  CAS  Google Scholar 

  14. Y. Wang, J. Li, D. Viehland, Mater. Today 17, 269 (2014). https://doi.org/10.1016/j.mattod.2014.05.004

    Article  CAS  Google Scholar 

  15. R.W. Dave, G. Steiner, J.M. Slaughter, J.J. Sun, B. Craigo, S. Pietambaram, K. Smith, G. Grynkewich, M. DeHerrera, J. Akerman, S. Tehrani, IEEE Trans. Magn. 42, 1935 (2006). https://doi.org/10.1109/TMAG.2006.877743

    Article  CAS  Google Scholar 

  16. G. Grynkewich, J. Åkerman, P. Brown, B. Butcher, R.W. Dave, M. DeHerrera, M. Durlam, B.N. Engel, J. Janesky, S. Pietambaram, N.D. Rizzo, J.M. Slaughter, K. Smith, J.J. Sun, S. Tehrani, MRS Bull. 29(11), 818 (2004). https://doi.org/10.1557/mrs2004.234

    Article  CAS  Google Scholar 

  17. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, R.J. Cava, S.G. Louie, J. Xia, X. Zhang, Nature 546, 265 (2017). https://doi.org/10.1038/nature22060

    Article  CAS  Google Scholar 

  18. B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu, Nature 546, 270 (2017). https://doi.org/10.1038/nature22391

    Article  CAS  Google Scholar 

  19. D.R. Klein, D. MacNeill, J.L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, P. Canfield, J. Fernández-Rossier, P. Jarillo-Herrero, Science 360(6394), 1218 (2018). https://doi.org/10.1126/science.aar3617

    Article  CAS  Google Scholar 

  20. W. Chen, Z. Sun, Z. Wang, L. Gu, X. Xu, S. Wu, C. Gao, Science 366, 983 (2019). https://doi.org/10.1126/science.aav1937

    Article  CAS  Google Scholar 

  21. Y. Deng, Y. Yu, Y. Song, J. Zhang, N.Z. Wang, Z. Sun, Y. Yi, Y.Z. Wu, S. Wu, J. Zhu, J. Wang, X.H. Chen, Y. Zhang, Nature 563, 94 (2018). https://doi.org/10.1038/s41586-018-0626-9

    Article  CAS  Google Scholar 

  22. M. Bonilla, S. Kolekar, Y. Ma, H.C. Diaz, V. Kalappattil, R. Das, T. Eggers, H.R. Gutierrez, M.-H. Phan, M. Batzill, Nat. Nanotechnol. 13, 289 (2018). https://doi.org/10.1038/s41565-018-0063-9

    Article  CAS  Google Scholar 

  23. Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu, Q. Zhang, L. Gu, L. Tang, X. Feng, D. Zhang, W. Li, C. Song, L. Wang, P. Yu, X. Chen, Y. Wang, H. Yao, W. Duan, Y. Xu, S.-C. Zhang, X. Ma, Q.-K. Xue, K. He, Chin. Phys. Lett. 36(7), 076801 (2019). https://doi.org/10.1088/0256-307X/36/7/076801

    Article  CAS  Google Scholar 

  24. H. Zhang, M. Ye, Y. Wang, R. Quhe, Y. Pan, Y. Guo, Z. Song, J. Yang, W. Guo, J. Lu, Phys. Chem. Chem. Phys. 18, 16367 (2016). https://doi.org/10.1039/C6CP01866A

    Article  CAS  Google Scholar 

  25. T. Song, X. Cai, M.W.-Y. Tu, X. Zhang, B. Huang, N.P. Wilson, K.L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M.A. McGuire, D.H. Cobden, D. Xiao, W. Yao, X. Xu, Science 360(6394), 1214 (2018). https://doi.org/10.1126/science.aar4851

    Article  CAS  Google Scholar 

  26. Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, A.F. Morpurgo, Nat. Commun. 9, 2516 (2018). https://doi.org/10.1038/s41467-018-04953-8

    Article  CAS  Google Scholar 

  27. X. Li, J.-T. Lu, J. Zhang, L. You, Y. Su, E.Y. Tsymbal, Nano Lett. 19, 5133 (2019). https://doi.org/10.1021/acs.nanolett.9b01506

    Article  CAS  Google Scholar 

  28. Z.-Z. Lin, X. Chen, Adv. Electron. Mater. 6, 1900968 (2020). https://doi.org/10.1002/aelm.201900968

    Article  CAS  Google Scholar 

  29. Z. Yan, R. Zhang, X. Dong, S. Qi, X. Xu, Phys. Chem. Chem. Phys. 22, 14773 (2020). https://doi.org/10.1039/D0CP02534H

    Article  CAS  Google Scholar 

  30. L. Zhang, T. Li, J. Li, Y. Jiang, J. Yuan, H. Li, J. Phys. Chem. C 124, 27429 (2020). https://doi.org/10.1021/acs.jpcc.0c09432

    Article  CAS  Google Scholar 

  31. W. Yang, Y. Cao, J. Han, X. Lin, X. Wang, G. Wei, C. Lv, A. Bournel, W. Zhao, Nanoscale 13, 862 (2021). https://doi.org/10.1039/D0NR07290G

    Article  CAS  Google Scholar 

  32. N. Devaraj, K. Tarafder, Phys. Rev. B 103, 165407 (2021). https://doi.org/10.1103/PhysRevB.103.165407

    Article  CAS  Google Scholar 

  33. Y. Zhu, X.Y. Guo, L.N. Jiang, Z.R. Yan, Y. Yan, X.F. Han, Phys. Rev. B 103, 134437 (2021). https://doi.org/10.1103/PhysRevB.103.134437

    Article  CAS  Google Scholar 

  34. X. Guo, B. Yang, X. Zhang, Y. Zhu, X. Han, Y. Yan, Phys. Rev. B 104, 144423 (2021). https://doi.org/10.1103/PhysRevB.104.144423

    Article  CAS  Google Scholar 

  35. Z. Yan, X. Jia, X. Shi, X. Dong, X. Xu, Appl. Phys. Lett. 118, 223503 (2021). https://doi.org/10.1063/5.0052720

    Article  CAS  Google Scholar 

  36. S. Parkin, MRS Bull. 31(5), 389 (2006). https://doi.org/10.1557/mrs2006.99

    Article  CAS  Google Scholar 

  37. W. Savero Torres, J.F. Sierra, L.A. Benítez, F. Bonell, J.H. García, S. Roche, S.O. Valenzuela, MRS Bull. 45(5), 357 (2020) https://doi.org/10.1557/mrs.2020.121

    Article  Google Scholar 

  38. B. Dieny, M. Chshiev, Rev. Mod. Phys. 89, 025008 (2017). https://doi.org/10.1103/RevModPhys.89.025008

    Article  Google Scholar 

  39. M.M. Otrokov, I.I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z.S. Aliev, S. Gaß, A.U.B. Wolter, A.V. Koroleva, A.M. Shikin, M. Blanco-Rey, M. Hoffmann, I.P. Rusinov, A.Yu. Vyazovskaya, S.V. Eremeev, Yu.M. Koroteev, V.M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I.R. Amiraslanov, M.B. Babanly, N.T. Mamedov, N.A. Abdullayev, V.N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E.F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R.C. Vidal, S. Schatz, K. Kiẞner, M. Ünzelmann, C.H. Min, S. Moser, T.R.F. Peixoto, F. Reinert, A. Ernst, P.M. Echenique, A. Isaeva, E.V. Chulkov, Nature 576, 416 (2019). https://doi.org/10.1038/s41586-019-1840-9

    Article  CAS  Google Scholar 

  40. D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, J. Wang, Phys. Rev. Lett. 122, 206401 (2019). https://doi.org/10.1103/PhysRevLett.122.206401

    Article  CAS  Google Scholar 

  41. J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, Y. Xu, Sci. Adv. 5, eaaw5685 (2019). https://doi.org/10.1126/sciadv.aaw5685

    Article  CAS  Google Scholar 

  42. Y. Li, J. Xiao, K. Chang, Nano Lett. 18, 3032 (2018). https://doi.org/10.1021/acs.nanolett.8b00492

    Article  CAS  Google Scholar 

  43. Y. Deng, Y. Yu, M.Z. Shi, Z. Guo, Z. Xu, J. Wang, X.H. Chen, Y. Zhang, Science 367, 895 (2020). https://doi.org/10.1126/science.aax8156

    Article  CAS  Google Scholar 

  44. C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, Y. Wang, Nat. Mater. 19, 522 (2020). https://doi.org/10.1038/s41563-019-0573-3

    Article  CAS  Google Scholar 

  45. H. Li, C.-Z. Chen, H. Jiang, X.C. Xie, Phys. Rev. Lett. 127, 236402 (2021). https://doi.org/10.1103/PhysRevLett.127.236402

    Article  CAS  Google Scholar 

  46. B. Wei, J.-J. Zhu, Y. Song, K. Chang, Phys. Rev. B 104, 174436 (2021). https://doi.org/10.1103/PhysRevB.104.174436

    Article  CAS  Google Scholar 

  47. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  49. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001). https://doi.org/10.1103/PhysRevB.63.245407

    Article  CAS  Google Scholar 

  50. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002). https://doi.org/10.1103/PhysRevB.65.165401

    Article  CAS  Google Scholar 

  51. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P.A. Khomyakov, U.G. Vej-Hansen, M.-E. Lee, S.T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M.L.N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, J. Phys. Condens. Matter 32(1), 015901 (2020). https://doi.org/10.1088/1361-648X/ab4007

    Article  CAS  Google Scholar 

  52. M. Van Setten, M. Giantomassi, E. Bousquet, M.J. Verstraete, D.R. Hamann, X. Gonze, G.-M. Rignanese, Comput. Phys. Commun. 226, 39 (2018). https://doi.org/10.1016/j.cpc.2018.01.012

    Article  CAS  Google Scholar 

  53. M.M. Otrokov, I.P. Rusinov, M. Blanco-Rey, M. Hoffmann, A.Y. Vyazovskaya, S.V. Eremeev, A. Ernst, P.M. Echenique, A. Arnau, E.V. Chulkov, Phys. Rev. Lett. 122, 107202 (2019). https://doi.org/10.1103/PhysRevLett.122.107202

    Article  CAS  Google Scholar 

  54. Z. Wu, F.M. Peeters, K. Chang, Phys. Rev. B 82, 115211 (2010). https://doi.org/10.1103/PhysRevB.82.115211

    Article  CAS  Google Scholar 

  55. Z. Wu, L. Lin, W. Yang, D. Zhang, C. Shen, W. Lou, H. Yin, K. Chang, RSC Adv. 7, 30963 (2017). https://doi.org/10.1039/c7ra03482b

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technology (Grant Nos. 2021YFA1200502, and 2018YFA0306101) and the National Natural Science Foundation of China (Grant Nos. 12174423, 11974340, and 61674145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangtao Liu, Zhenhua Wu or Kai Chang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1022 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, G., Yang, Z., Luo, K. et al. Spin-dependent tunneling in 2D MnBi2Te4-based magnetic tunnel junctions. MRS Bulletin 47, 1177–1184 (2022). https://doi.org/10.1557/s43577-022-00381-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00381-8

Keywords

Navigation