Skip to main content

How can Raman spectroscopy be used to study nuclear fuel?

Abstract

Raman spectroscopy was recently used to characterize irradiated, doped, or implanted UO2. In all cases, the Raman spectrum evidenced three additional peaks, called defect peaks, whose interpretation is still under debate. Here, we evidence that defect peaks are Raman resonant peaks with different resonance energy using Raman multiwavelength analysis of He-irradiated UO2. Moreover, we demonstrate by phonon calculations that they correspond to a local symmetry, in which at least F-centering is lost. These findings provide a new framework for the interpretation of the Raman spectrum of modified compounds having initial fluorite structure.

Impact statement

Nuclear fuel is a major environmental, energetic, and geostrategic issue. Its identification and characterization is mandatory for controlling both its dissemination and its behavior in any situation. Raman spectroscopy is a new and promising option for that purpose, because it can easily be used in situ, even in a radioactive environment, thanks to optical fibers for allowing remote operation. Nevertheless, its development requires an in-depth understanding of the information that can be gained from the Raman method about this material. This article provides an explanation for the interpretation of the so-called defect peaks. The main outcome of this interpretation is that there is no straightforward manner to interpret the defect peaks, but, in some simplified cases, the defect peaks can be the signature of one single effect, whose concentration could then be determined quantitatively. The identification and modeling of all defects that can generate the defect peaks is a promising area of research. This framework for interpretation could also be applied to other compounds having fluorite structure.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Available in the supporting information.

References

  1. T. Livneh, J. Phys. Condens. Matter 20(8), 085202 (2008)

    Article  Google Scholar 

  2. T. Livneh, E. Sterer, Phys. Rev. B Condens. Matter Mater. Phys. 73(8), 085118 (2006)

    Article  Google Scholar 

  3. S. Karcher, R. Mohun, T. Olds, M. Weber, K. Kriegsman, X. Zhao, X. Guo, C. Corkhill, D. Field, J. MCCloy, J. Raman Spectrosc. 53(5), 988 (2022). https://doi.org/10.1002/jrs.6321

    CAS  Article  Google Scholar 

  4. G. Guimbretière, L. Desgranges, A. Canizarès, G. Carlot, R. Caraballo, C. Jégou, F. Duval, N. Raimboux, M.R. Ammar, P. Simon, Appl. Phys. Lett. 100(25), 251914 (2012)

    Article  Google Scholar 

  5. A. Canizarès, G. Guimbretière, Y.A. Tobon, N. Raimboux, R. Omnée, M. Perdicakis, B. Muzeau, E. Leoni, M.S. Alam, E. Mendes, D. Simon, G. Matzen, C. Corbel, M.F. Barthe, P. Simon, J. Raman Spectrosc. 43, 1492 (2012)

    Article  Google Scholar 

  6. G. Guimbretière, L. Desgranges, A. Canizarès, R. Caraballo, F. Duval, N. Raimboux, R. Omnée, M.R. Ammar, C. Jegou, P. Simon, Appl. Phys. Lett. 103(4), 041904 (2013)

    Article  Google Scholar 

  7. C. Jégou, R. Caraballo, J. De Bonfils, V. Broudic, S. Peuget, T. Vercouter, D. Roudil, J. Nucl. Mater. 399, 68 (2010)

    Article  Google Scholar 

  8. T.A. Olds, S.E. Karcher, K.W. Kriegsman et al., J. Nucl. Mater. 530, 151959 (2020)

    CAS  Article  Google Scholar 

  9. L. Sarrasin, C. Gaillard, C. Panetier, Y. Pipon, N. Moncoffre, D. Mangin, R. Ducher, R. Dubourg,  Inorg. Chem. 58(8), 4761 (2019)

    CAS  Article  Google Scholar 

  10. R. Mohun, L. Desgranges, C. Jegou, B. Boizot, O. Cavani, A. Canizares, F. Duval, C. He, P. Desgardin, M.F. Barthe, P. Simon, Acta Mater. 164, 512 (2019)

    CAS  Article  Google Scholar 

  11. T. Livneh, Phys. Rev. B 105, 045115 (2022)

    CAS  Article  Google Scholar 

  12. Unisoft software. http://www.uni-pc.gwdg.de/eckold/unisoft.html

  13. L.T. Belkacemi, E. Meslin, B. Décamps, B. Radiguet, J. Henry, Acta Mater. 161, 61 (2018)

    CAS  Article  Google Scholar 

  14. P.D. Edmondson, C.M. Parish, R.K. Nanstad, Acta Mater. 134, 31 (2017)

    CAS  Article  Google Scholar 

  15. N. Lanatà, Y. Yao, X. Deng, V. Dobrosavljević, G. Kotliar, Phys. Rev. Lett. 118, 126401 (2017)

    Article  Google Scholar 

  16. K.I. Maslakov, Y.A. Teterin, M.V. Ryzhkov, A.J. Popel, A.Y. Teterin, K.E. Ivanov, S.N. Kalmykov, V.G. Petrov, I. Farnan, Int. J. Quantum Chem. 119, e26040 (2019). https://doi.org/10.1002/qua.26040

    CAS  Article  Google Scholar 

  17. E. Villa-Aleman, N.J. Bridges, T.C. Shehee, A.L. Houk, J. Nucl. Mater. 515, 140 (2019)

    CAS  Article  Google Scholar 

  18. T.M. McCleskey, E. Bauer, Q. Jia, A.K. Burrell, B.L. Scott, S.D. Conradson, A. Mueller, L. Roy, X. Wen, G.E. Scuseria, R.L. Martin, J. Appl. Phys. 113, 013515 (2013)

    Article  Google Scholar 

  19. T. Taniguchi, T. Watanabe, N. Sugiyama, A.K. Subramani, H. Wagata, N. Matsushita, M. Yoshimura, J. Phys. Chem. C 113(46), 19789 (2009)

    CAS  Article  Google Scholar 

  20. O.A. Maslova, G. Guimbretiere, M.R. Ammar, L. Desgranges, C. Jegou, A. Canizares, P. Simon, Mater. Charact. 129, 260 (2017)

    CAS  Article  Google Scholar 

  21. O.A. Maslova, X. Iltis, L. Desgranges, M.R. Ammar, C. Genevois, E. De Bilbao, A. Canizarès, S.A. Barannikova, I.N. Leontyev, P. Simon, Mater. Charact. 147, 280 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the project “Transport & Entreposage du Combustible Usé” from the French nuclear tripartite institute CEA, EDF, Framatome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Desgranges.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simon, P., Canizares, A., Raimboux, N. et al. How can Raman spectroscopy be used to study nuclear fuel?. MRS Bulletin (2022). https://doi.org/10.1557/s43577-022-00371-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-022-00371-w

Keywords

  • Nuclear materials
  • Raman spectroscopy
  • Radiation effects
  • Electron–phonon interactions