Skip to main content
Log in

Hydrolysis embrittles poly(lactic acid)

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The backbones of biodegradable and bioderived polymers often contain chemical bonds, such as ester and amide that are susceptible to hydrolysis. Here, we show that hydrolysis causes a transition from ductile to brittle fracture in poly(lactic acid) (PLA). Submerged in an aqueous solution and bearing a load, a sample with a precrack undergoes extensive plastic deformation when the crack grows fast, but negligible plastic deformation when the crack grows slowly. In the former, the ductile fracture creates rough and porous crack surfaces, indicating that polymer chains slip before scission. In the latter, the brittle fracture creates flat crack surfaces, indicating that polymer chains slip negligibly before scission. Furthermore, at a low load and over a broad range of pH, the velocity of a crack in PLA correlates with the rate of hydrolysis of lactic acid oligomers. Taken together, these observations demonstrate that PLA suffers hydrolytic embrittlement. The phenomenon should be taken into account in the design of—and with—biodegradable and bioderived polymers.

Impact statement

In thermoplastics of high molecular weights, repeat units form long polymer chains by chemical bonds, and the long polymer chains form solids by physical interactions. Between neighboring repeat units, the chemical bonds are commonly much stronger than the physical interactions. Polymer chains slip extensively before scission in ductile fracture, but slip negligibly before scission in brittle fracture. In biodegradable and bioderived thermoplastics, repeat units often link by chemical bonds susceptible to hydrolysis. Here, we show that hydrolysis embrittles a leading bioderived thermoplastic, poly(lactic acid). Even a small load exposes a crack tip to water molecules from the environment, hydrolyzing ester bonds and breaking chains with negligible chain slip. The material has a toughness above 104 J/m2. However, submerged in an aqueous solution, the material can grow a crack at an energy release rate as low as 1 J/m2. Hydrolytic embrittlement should be investigated for biodegradable and bioderived polymers under development for health care and sustainability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

adapted from Reference 41).

Similar content being viewed by others

References

  1. R.E. Drumright, P.R. Gruber, D.E. Henton, Polylactic acid technology. Adv. Mater. 12, 1841 (2000)

    Article  CAS  Google Scholar 

  2. M.S. Singhvi, S.S. Zinjarde, D.V. Gokhale, Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 127, 1612 (2019)

    Article  CAS  Google Scholar 

  3. A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J.H. Jang, M. Abu-Omar, S.L. Scott, S. Suh, Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494 (2020)

    Article  CAS  Google Scholar 

  4. G. Kale, R. Auras, S.P. Singh, Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. J. Polym. Environ. 14, 317 (2006)

    Article  CAS  Google Scholar 

  5. R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835 (2004)

    Article  CAS  Google Scholar 

  6. J. Muller, C. González-Martínez, A. Chiralt, Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials (Basel) 10(8), 952 (2017)

    Article  Google Scholar 

  7. K. Hamad, M. Kaseem, H.W. Yang, F. Deri, Y.G. Ko, Properties and medical applications of polylactic acid: A review. Express Polym. Lett. 9, 435 (2015)

    Article  CAS  Google Scholar 

  8. D. da Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman, A. Schroeder, Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 340, 9 (2018)

    Article  Google Scholar 

  9. Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee, V.L. Tagarielli, Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 123, 154 (2017)

    Article  CAS  Google Scholar 

  10. T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 143, 172 (2018)

    Article  CAS  Google Scholar 

  11. X. Yang, J. Steck, J. Yang, Y. Wang, Z. Suo, Degradable plastics are vulnerable to cracks. Engineering 7, 624 (2021)

    Article  CAS  Google Scholar 

  12. C. Chu, N. Campbell, Scanning electron microscopic study of the hydrolytic degradation of poly (glycolic acid) suture. J. Biomed. Mater. Res. 16, 417 (1982)

    Article  CAS  Google Scholar 

  13. R. Chandra, R. Rustgi, Biodegradable polymers. Prog. Polym. Sci. 23, 1273 (1998)

    Article  CAS  Google Scholar 

  14. Z. Wang, M.S. Ganewatta, C. Tang, Sustainable polymers from biomass: Bridging chemistry with materials and processing. Prog. Polym. Sci. 101, 101197 (2020)

    Article  CAS  Google Scholar 

  15. C. Hepburn, Polyurethane Elastomers (Springer, New York, 2012)

    Google Scholar 

  16. A. Atrens, N. Winzer, W. Dietzel, Stress corrosion cracking of magnesium alloys. Adv. Eng. Mater. 13, 11(2011). https://doi.org/10.1002/adem.200900287

    Article  CAS  Google Scholar 

  17. K. Sieradzki, R.C. Newman, Brittle behavior of ductile metals during stress-corrosion cracking. Philos. Mag. A 51, 95 (1985). https://doi.org/10.1080/01418618508245272

    Article  CAS  Google Scholar 

  18. E. Orowan, The fatigue of glass under stress. Nature 154, 341 (1944). https://doi.org/10.1038/154341a0

    Article  Google Scholar 

  19. S.M. Wiederhorn, Moisture assisted crack growth in ceramics. Int. J. Fract. Mech. 4, 171 (1968)

    Article  Google Scholar 

  20. M. Ciccotti, Stress-corrosion mechanisms in silicate glasses. J. Phys. D Appl. Phys. 42(21), 214006 (2009). https://doi.org/10.1088/0022-3727/42/21/214006

    Article  CAS  Google Scholar 

  21. M. Braden, A.N. Gent, The attack of ozone on stretched rubber vulcanizates. I. The rate of cut growth. J. Appl. Polym. Sci. 3, 90 (1960). https://doi.org/10.1002/app.1960.070030713

    Article  CAS  Google Scholar 

  22. M. Braden, A.N. Gent, The attack of ozone on stretched rubber vulcanizates. II. Conditions for cut growth. J. Appl. Polym. Sci. 3, 100 (1960)

    Article  CAS  Google Scholar 

  23. M. Shi, J. Steck, X. Yang, G. Zhang, J. Yin, Z. Suo, Cracks outrun erosion in degradable polymers. Extreme Mech. Lett. 40, 100978 (2020). https://doi.org/10.1016/j.eml.2020.100978

    Article  Google Scholar 

  24. X. Yang, J. Yang, L. Chen, Z. Suo, Hydrolytic crack in a rubbery network. Extreme Mech. Lett. 31, 100531 (2019). https://doi.org/10.1016/j.eml.2019.100531

    Article  Google Scholar 

  25. Q. Jiao, M. Shi, T. Yin, Z. Suo, J.J. Vlassak, Composites retard hydrolytic crack growth. Extreme Mech. Lett. 48, 101433 (2021)

    Article  Google Scholar 

  26. T. Baumberger, O. Ronsin, Environmental control of crack propagation in polymer hydrogels. Mech. Soft Mater. 2, 14 (2020). https://doi.org/10.1007/s42558-020-00027-2

    Article  Google Scholar 

  27. P. Prentice, The influence of molecular weight on the fracture of thermoplastic glassy polymers. J. Mater. Sci. 20, 1445 (1985)

    Article  CAS  Google Scholar 

  28. J. Zhao, L. Lu, T. Rabczuk, The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers. Comput. Mater. Sci. 96, 567 (2015)

    Article  CAS  Google Scholar 

  29. J. Jancar, E. Fekete, P. Hornsby, J. Jancar, B. Pukánszky, R. Rothon, Mineral Fillers in Thermoplastics I: Raw Materials and Processing (Springer, New York, 1999)

    Book  Google Scholar 

  30. S.N. Zhurkov, V.E. Korsukov, Atomic mechanism of fracture of solid polymers. J. Polym. Sci. Polym. Phys. Ed. 12, 385 (1974)

    Article  CAS  Google Scholar 

  31. S.-Q. Wang, S. Cheng, P. Lin, X. Li, A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses. J. Chem. Phys. 141, 094905 (2014)

    Article  Google Scholar 

  32. I. Vroman, L. Tighzert, Biodegradable polymers. Materials (Basel) 2(2), 307 (2009)

    Article  CAS  Google Scholar 

  33. G.H. Yew, A.M. Yusof, Z.M. Ishak, U.S. Ishiaku, Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polym. Degrad. Stab. 90, 488 (2005)

    Article  CAS  Google Scholar 

  34. E.W. Fischer, H.J. Sterzel, G. Wegner, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z. Z. Polym. 251, 980 (1973)

    Article  CAS  Google Scholar 

  35. T. Tábi, S. Hajba, J.G. Kovács, Effect of crystalline forms (α′ and α) of poly (lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur. Polym. J. 82, 232 (2016)

    Article  Google Scholar 

  36. A. Pawlak, A. Galeski, A. Rozanski, Cavitation during deformation of semicrystalline polymers. Prog. Polym. Sci. 39, 921 (2014)

    Article  CAS  Google Scholar 

  37. H. Tada, P.C. Paris, G.R. Irwin, The Stress Analysis of Cracks Handbook (Del Research Corporation, Hellertown, 1973), p. 53

  38. G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361 (1957)

    Article  Google Scholar 

  39. T. Baumberger, O. Ronsin, Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels. Biomacromolecules 11, 1571 (2010). https://doi.org/10.1021/bm1002015

    Article  CAS  Google Scholar 

  40. S.M. Wiederhorn, Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50, 407 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15145.x

  41. S.J. de Jong, E.R. Arias, D.T.S. Rijkers, C.F. van Nostrum, J.J. Kettenes-van den Bosch, W.E. Hennink, New insights into the hydrolytic degradation of poly(lactic acid): Participation of the alcohol terminus. Polymer 42(7), 2795 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Harvard University MRSEC, which is funded by the National Science Foundation under Grant DMR-2011754. Part of this work was performed at the Center for Nanoscale Systems (CNS), which is supported by the National Science Foundation under Grant ECS 1541959. M.S. and T.Y. were visiting students at Harvard University supported by the China Scholarship Council. Q.J. acknowledges H. Yang’s assistance in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joost J. Vlassak or Zhigang Suo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 253963 kb)

Supplementary file2 (MP4 65435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Jiao, Q., Yin, T. et al. Hydrolysis embrittles poly(lactic acid). MRS Bulletin 48, 45–55 (2023). https://doi.org/10.1557/s43577-022-00368-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00368-5

Keywords

Navigation