Skip to main content

Full and half-Heusler compounds

Abstract

Heusler and half-Heusler compounds are ternary intermetallic compounds with highly tunable magnetic, topological, multiferroic, and electronic properties. They share a common crystal structure with more than 1000 members and compositions spanning most of the periodic table. This issue of MRS Bulletin covers the fundamental properties, synthesis science, and applications of Heusler and half-Heusler compounds from leading experts in theory and experiment. Topics include novel magnetic properties, thermoelectrics, skyrmions, spintronics applications, unconventional superconductivity, topological properties, and martensitic phase transitions. New approaches for materials discovery using high-throughput and big data approaches are highlighted.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. M. Jourdan, J. Minár, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Gloskovskii, M. Kolbe, H.J.J. Elmers, G. Schönhense, H. Ebert, C. Felser, M. Kläui, Nat. Commun. 5, 3974 (2014)

    CAS  Article  Google Scholar 

  2. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 15 (1983)

    Article  Google Scholar 

  3. D. Du, S. Manzo, C. Zhang, V. Saraswat, K.T. Genser, K.M. Rabe, P.M. Voyles, M.S. Arnold, J.K. Kawasaki, Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-22784-y

    Article  Google Scholar 

  4. R. Niemann, U.K. Rößler, M.E. Gruner, O. Heczko, L. Schultz, S. Fähler, Adv. Eng. Mater. 14(8), 562 (2012)

    CAS  Article  Google Scholar 

  5. I.K. Zasimchuk, V.V. Kokorin, V.V. Martynov, A.V. Tkachenko, V.A. Chernenko, Phys. Met. Metallogr. 69(6), 104 (1990)

    Google Scholar 

  6. V.V. Kokorin, V.A. Chernenko, Phys. Met. Metallogr. 68(6), 111 (1989)

    Google Scholar 

  7. J.A. Logan, S.J. Patel, S.D. Harrington, C.M. Polley, B.D. Schultz, T. Balasubramanian, A. Janotti, A. Mikkelsen, C.J. Palmstrøm, Nat. Commun. 7, 11993 (2016)

    CAS  Article  Google Scholar 

  8. S. Chadov, X. Qi, J. Kübler, G.H. Fecher, C. Felser, S.C. Zhang, Nat Mater. 9, 541 (2010)

    CAS  Article  Google Scholar 

  9. Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S.R. Saha, D. Pratt, J.W. Lynn, J. Paglione, Sci. Adv. 1, 2021 (2015)

    Article  Google Scholar 

  10. Z.K. Liu, L.X. Yang, S.C. Wu, C. Shekhar, J. Jiang, H.F. Yang, Y. Zhang, S.K. Mo, Z. Hussain, B. Yan, C. Felser, Y.L. Chen, Nat. Commun. 7, 12924 (2016)

    CAS  Google Scholar 

  11. H. Lin, L. Wray, Y. Xia, S. Xu, S. Jia, R. Cava, A. Bansil, M. Hasan, Nat. Mater. 9, 546 (2010)

    CAS  Article  Google Scholar 

  12. J. Winterlik, G.H. Fecher, C. Felser, M. Jourdan, K. Grube, F. Hardy, H. von Löhneysen, K.L. Holman, R.J. Cava, Phys. Rev. B 78, 1 (2008)

    Article  Google Scholar 

  13. P.M.R. Brydon, L. Wang, M. Weinert, D.F. Agterberg, Phys. Rev. Lett. 116, 177001 (2016)

    CAS  Article  Google Scholar 

  14. P.C. Canfield, J.D. Thompson, W.P. Beyermann, J. Appl. Phys. 70, 5800 (1991)

    CAS  Article  Google Scholar 

  15. K. Mastronardi, D. Young, C.-C. Wang, P. Khalifah, R.J. Cava, A.P. Ramirez, Appl. Phys. Lett. 74, 1415 (1999)

    CAS  Article  Google Scholar 

  16. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011)

    CAS  Article  Google Scholar 

  17. J.K. Kawasaki, APL Mater. 7, 080907 (2019)

    Article  Google Scholar 

  18. J. He, C. Wolverton, K. Rabe, MRS Bull. 47(6), (2022)

  19. M. Brod, S. Guo, Y. Zhang, G.J. Snyder, MRS Bull. 47(6), (2022). https://doi.org/10.1557/s43577-022-00360-z

  20. J.W. Bennett, K.F. Garrity, K.M. Rabe, D. Vanderbilt, Phys. Rev. Lett. 109, 167602 (2012)

    Article  Google Scholar 

  21. T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)

    CAS  Article  Google Scholar 

  22. K. Hamaya, M. Yamada, MRS Bull. 47(6), (2022). https://doi.org/10.1557/s43577-022-00351-0

  23. A. Hirohata, D.C. Lloyd, MRS Bull. 47(6), (2022). https://doi.org/10.1557/s43577-022-00350-1

  24. C. Felser, S. Parkin, MRS Bull. 47(6), (2022)

  25. E. Mun, S.L. Bud'ko, MRS Bull. 47(6), (2022). https://doi.org/10.1557/s43577-022-00353-y

  26. O. Heczko, H. Seiner, S. Fähler, MRS Bull. 47(6), (2022). https://doi.org/10.1557/s43577-022-00354-x

Download references

Acknowledgments

J.K.K. acknowledges support from the National Science Foundation (DMR-1752797, DMR-1720415) and the Air Force Office of Scientific Research (FA9550-21-1-0127). S.C. acknowledges support from DST SERB SPR/2021/000255 and the Department of Atomic Energy, Government of India, under Project No. 12-R&D-TFR-5.10-0100. Work done at Ames Laboratory (PCC) was supported by the US Department of Energy, Office of Basic Energy Science, Materials Sciences and Engineering Division. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jason K. Kawasaki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, J.K., Chatterjee, S., Canfield, P.C. et al. Full and half-Heusler compounds. MRS Bulletin (2022). https://doi.org/10.1557/s43577-022-00355-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-022-00355-w

Keywords

  • Magnetic
  • Topological
  • Phase Transformation
  • Thermoelectric