Skip to main content

Advertisement

Log in

Defect identification in simulated Bragg coherent diffraction imaging by automated AI

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

X-ray Bragg coherent diffraction imaging is a powerful technique for operando and in situ materials characterization and provides a unique means of quantifying the influence of one-dimensional (1D) and two-dimensional (2D) material defects on material response. However, obtaining full images from raw x-ray diffraction data is nontrivial and computationally intensive, precluding real-time experimental feedback. Here, we present a machine learning approach to identify the presence of crystalline line defects (edge and screw) in samples from the raw, 2D, coherent diffraction data without the need for image reconstruction through iterative phase retrieval. We compare different approaches to designing neural networks for this application and demonstrate the potential of automated ML (autoML) approaches.

Impact statement

The need for automated processing of coherent diffraction data is strongly motivated by the advent of fourth-generation synchrotron x-ray sources, where coherent diffraction data will be generated at a tremendous rate and human interaction with data analysis, and especially iterative phase retrieval image reconstruction, will become untenable. Our approach provides a path to dealing with this necessary improvement in data processing efficiency. We expect that this work, which demonstrates the applicability of automated machine learning to x-ray analysis, will be of broad interest to scientists and users of synchrotron and XFEL facilities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

taken from the starting array. (c) Represents a simulated perfect edge defect placed into the structure. (d) The LAMMPS relaxed version of (c, e) and (g) are examples of the simulated 3D Bragg coherent diffraction imaging (BCD) patterns for the given simulated crystals. (f, h) Two-dimensional central slices of the simulated 3D BCDI patterns.

Similar content being viewed by others

Data availability

Trained networks, code, raw data, and tutorials can be found at https://github.com/WilliamJudge94/CDI_AI. In turn, tutorials on the crystal simulations, LAMMPS relaxation, and PyNX simulations can be found at https://crystal-simulation.readthedocs.io/en/latest/index.html.

Code availability

Trained networks, code, raw data, and tutorials can be found at https://github.com/WilliamJudge94/CDI_AI. In turn, tutorials on the crystal simulations, LAMMPS relaxation, and PyNX simulations can be found at https://crystal-simulation.readthedocs.io/en/latest/index.html .

References

  1. A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T.A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, N. Hua, J. Wingert, H. Liu, M. Sprung, A.V. Zozulya, E. Maxey, R. Harder, Y.S. Meng, O.G. Shpyrko, Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641 (2018)

    Article  CAS  Google Scholar 

  2. H. Guo, Z. Wei, K. Jia, B. Qiu, C. Yin, F. Meng, Q. Zhang, L. Gu, S. Han, Y. Liu, H. Zhao, W. Jiang, H. Cui, Y. Xia, Z. Liu, Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 16, 220 (2019)

    Article  Google Scholar 

  3. D. Kim, M. Chung, S. Kim, K. Yun, W. Cha, R. Harder, H. Kim, Defect dynamics at a single Pt nanoparticle during catalytic oxidation. Nano Lett. 19, 5044 (2019)

    Article  CAS  Google Scholar 

  4. R. Chattot, P. Bordet, I. Martens, J. Drnec, L. Dubau, F. Maillard, Building practical descriptors for defect engineering of electrocatalytic materials. ACS Catal. 10, 9046 (2020)

    Article  CAS  Google Scholar 

  5. X. Shi, R. Harder, Z. Liu, O. Shpyrko, E. Fullerton, B. Kiefer, E. Fohtung, Nanoscale mapping of heterogeneous strain and defects in individual magnetic nanocrystals. Curr. Comput. Aided Drug Des. 10, 658 (2020). https://doi.org/10.3390/cryst10080658

    Article  CAS  Google Scholar 

  6. M. Dupraz, G. Beutier, D. Rodney, D. Mordehai, M. Verdier, Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent x-ray diffraction patterns: A numerical study. J. Appl. Crystallogr. 48, 621 (2015)

    Article  CAS  Google Scholar 

  7. J. Wang, L. Liu, C. Chen, X. Dong, Q. Wang, L. Alfilfil, M.R. AlAlouni, K. Yao, J. Huang, D. Zhang, Y. Han, Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. J. Mater. Chem. A 8, 4464 (2020)

    Article  CAS  Google Scholar 

  8. L. David, R.E. Ruther, D. Mohanty, H.M. Meyer, Y. Sheng, S. Kalnaus, C. Daniel, D.L. Wood, Identifying degradation mechanisms in lithium-ion batteries with coating defects at the cathode. Appl. Energy 231, 446 (2018)

    Article  CAS  Google Scholar 

  9. J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, W. Pang, Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coord. Chem. Rev. 349, 169 (2017)

    Article  CAS  Google Scholar 

  10. U. Ruett, J. Almer, P. Kenesei, J.-S. Park, R. Osborn, Y. Ren, D. Robinson, M. Krogstad, S. Rosenkranz, X. Zhang, M. Li, K. Wiaderek, APS: High-energy x-rays expediting applied and fundamental research. Synchrotron Radiat. News 33, 44 (2020). https://doi.org/10.1080/08940886.2020.1841498

    Article  Google Scholar 

  11. N. Heidenreich, S. Waitschat, H. Reinsch, Investigation of the kinetic stabilization of a Ce4+-based MOF by in-situ powder x-ray diffraction. Z. Anorg. Allg. Chem. 644, 1826 (2018)

    Article  CAS  Google Scholar 

  12. M. Holt, R. Harder, R. Winarski, V. Rose, Nanoscale hard x-ray microscopy methods for materials studies. Annu. Rev. Mater. Res. 43, 183 (2013)

    Article  CAS  Google Scholar 

  13. F. Rovaris, M.H. Zoellner, P. Zaumseil, M.A. Schubert, A. Marzegalli, L. Di Gaspare, M. De Seta, T. Schroeder, P. Storck, G. Schwalb, C. Richter, T.U. Schulli, G. Capellini, F. Montalenti, Misfit-dislocation distributions in heteroepitaxy: From mesoscale measurements to individual defects and back. Phys. Rev. Appl. 10, 054067 (2018)

    Article  CAS  Google Scholar 

  14. M. Kodur, R.E. Kumar, Y. Luo, D.N. Cakan, X. Li, M. Stuckelberger, D.P. Fenning, X-ray microscopy of halide perovskites: Techniques, applications, and prospects. Adv. Energy Mater. 10, 1903170 (2020)

    Article  Google Scholar 

  15. M. Meduna, F. Isa, A. Jung, A. Marzegalli, M. Albani, G. Isella, K. Zweiacker, L. Miglio, H. von Kanel, Lattice tilt and strain mapped by x-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals. J. Appl. Crystallogr. 51, 368 (2018)

    Article  CAS  Google Scholar 

  16. Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, Y. Kohmura, T. Ishikawa, Bragg x-ray ptychography of a silicon crystal: Visualization of the dislocation strain field and the production of a vortex beam. Phys. Rev. B 87, 121201 (2013)

    Article  Google Scholar 

  17. V.L.R. Jacques, S. Ravy, D. Le Bolloc’h, E. Pinsolle, M. Sauvage-Simkin, F. Livet, Bulk dislocation core dissociation probed by coherent x rays in silicon. Phys. Rev. Lett. 106, 065502 (2011)

    Article  CAS  Google Scholar 

  18. J. Miao, Coherent diffraction imaging. Microsc. Microanal. 20, 368 (2014)

    Article  Google Scholar 

  19. M.J. Cherukara, R. Pokharel, T.S. O’Leary, J.K. Baldwin, E. Maxey, W. Cha, J. Maser, R.J. Harder, S.J. Fensin, R.L. Sandberg, Three-dimensional x-ray diffraction imaging of dislocations in polycrystalline metals under tensile loading. Nat. Commun. 9, 3776 (2018)

    Article  Google Scholar 

  20. A. Ulvestad, Y. Nashed, G. Beutier, M. Verdier, S.O. Hruszkewycz, M. Dupraz, Identifying defects with guided algorithms in Bragg coherent diffractive imaging. Sci. Rep. 7, 9920 (2017)

    Article  CAS  Google Scholar 

  21. J.R. Fienup, Phase retrieval algorithms: A comparison. Appl. Opt. 21, 2758 (1982)

    Article  CAS  Google Scholar 

  22. V. Elser, Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20, 40 (2003)

    Article  Google Scholar 

  23. M.J. Cherukara, Y.S.G. Nashed, R.J. Harder, Real-time coherent diffraction inversion using deep generative networks. Sci. Rep. 8(1), 16520 (2018)

    Article  Google Scholar 

  24. L. Wu, P. Juhas, S. Yoo, I. Robinson, Complex imaging of phase domains by deep neural networks. IUCrJ 8, 12 (2021)

    Article  CAS  Google Scholar 

  25. H. Chan, Y.S.G. Nashed, S. Kandel, S.O. Hruszkewycz, S.K.R.S. Sankaranarayanan, R.J. Harder, M.J. Cherukara, Rapid 3D nanoscale coherent imaging via physics-aware deep learning. Appl. Phys. Rev. 8, 021407 (2021). https://doi.org/10.1063/5.0031486

    Article  CAS  Google Scholar 

  26. A. Scheinker, R. Pokharel, Adaptive 3D convolutional neural network-based reconstruction method for 3D coherent diffraction imaging. J. Appl. Phys. 128, 184901 (2020). https://doi.org/10.1063/5.0014725

    Article  CAS  Google Scholar 

  27. L. Wu, S. Yoo, A.F. Suzana, T. A. Assefa, R.J. Harder, W. Cha, I.K. Robinson, 3D coherent x-ray imaging via deep convolutional neural networks. arXiv:abs/2103.00001 (2021)

  28. B. Lim, E. Bellec, M. Dupraz, S. Leake, A. Resta, A. Coati, M. Sprung, E. Almog, E. Rabkin, T. Schulli, M.I. Richard, A convolutional neural network for defect classification in Bragg coherent x-ray diffraction. NPJ Comput. Mater. 7, 115 (2021)

    Article  CAS  Google Scholar 

  29. O. Okwuashi, C.E. Ndehedehe, Deep support vector machine for hyperspectral image classification. Pattern Recognit. 103, 107298 (2020)

    Article  Google Scholar 

  30. M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, S. Homayouni, Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 6308 (2020)

    Article  Google Scholar 

  31. S.B. Kotsiantis, I.D. Zaharakis, P.E. Pintelas, Machine learning: A review of classification and combining techniques. Artif. Intell. Rev. 26, 159 (2006)

    Article  Google Scholar 

  32. T.J. Brinker, A. Hekler, A.H. Enk, C. Berking, S. Haferkamp, A. Hauschild, M. Weichenthal, J. Klode, D. Schadendorf, T. Holland-Letz, C. von Kalle, S. Frohling, B. Schilling, J.S. Utikal, Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 119, 11 (2019)

    Article  Google Scholar 

  33. P.K. Mallick, S.H. Ryu, S.K. Satapathy, S. Mishra, G.N. Nguyen, P. Tiwari, Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access 7, 46278 (2019)

    Article  Google Scholar 

  34. K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2016), p. 770

  35. S. Yu, S. Jia, C. Xu, Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88 (2017)

    Article  Google Scholar 

  36. K. Weiss, T.M. Khoshgoftaar, D.D. Wang, A survey of transfer learning. J. Big Data 3, 9 (2016)

    Article  Google Scholar 

  37. K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, vol. 1 (2015), arXiv:abs/1409.1556

  38. G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, L. Zhang, Preparation of novel high copper ions removal membranes by embedding organosilane-functionalized multiwalled carbon nanotube. J. Chem. Technol. Biotechnol. 91, 2322 (2016)

    Article  CAS  Google Scholar 

  39. K. Jing, J. Xu, H.X. Zugeng, “NASABN: A Neural Architecture Search Framework for Attention-Based Networks,” 2020 International Joint Conference on Neural Networks (IJCNN) (2020), p. 1

  40. L. Guilin, Z. Xing, W. Zitong, L. Zhenguo, Z. Tong, Stacnas: Towards stable and consistent optimization for differentiable neural architecture search, arXiv, 1 (2019), arXiv:1909.11926v4

  41. https://cloud.google.com/automl

  42. https://aws.amazon.com/sagemaker

  43. H. Jin, Q. Song, X. Hu, “Auto-Keras: An Efficient Neural Architecture Search System,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (Association for Computing Machinery, 2019), p. 1946

  44. H. Qassim, A. Verma, D. Feinzimer, “Compressed Residual-VGG16 CNN Model for Big Data Places Image Recognition,” 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) (2018), p. 169

  45. K.-S. Lee, S.-K. Jung, J.-J. Ryu, S.-W. Shin, J. Choi, Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. J. Clin. Med. 9, 392 (2020)

    Article  CAS  Google Scholar 

  46. Z. Liu, T. Bicer, R. Kettimuthu, D. Gursoy, F. De Carlo, I. Foster, TomoGAN: Low-dose synchrotron x-ray tomography with generative adversarial networks: Discussion. J. Opt. Soc. Am. A 37, 422 (2020)

    Article  Google Scholar 

  47. V. Dung, L.D. Anh, Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 99, 52 (2019)

    Article  Google Scholar 

  48. A. Krishnaswamy Rangarajan, R. Purushothaman, Disease classification in eggplant using pre-trained VGG16 and MSVM. Sci. Rep. 10(1), 2322 (2020)

    Article  CAS  Google Scholar 

  49. X. Yu, W. Pang, Q. Xu, M. Liang, Mammographic image classification with deep fusion learning. Sci. Rep. 10, 14631 (2020)

    Google Scholar 

  50. S. Matsuda, T. Miyamoto, H. Yoshimura, T. Hasegawa, Personal identification with orthopantomography using simple convolutional neural networks: A preliminary study. Sci. Rep. 10, 13559 (2020)

    Article  Google Scholar 

  51. M. Christopher, A. Belghith, C. Bowd, J.A. Proudfoot, M.H. Goldbaum, R.N. Weinreb, C.A. Girkin, J.M. Liebmann, L.M. Zangwill, Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci. Rep. 8(1), 16685 (2018)

    Article  Google Scholar 

  52. Q. Yu, Y. Yang, F. Liu, Y.Z. Song, T. Xiang, T.M. Hospedales, Sketch-a-Net: A deep neural network that beats humans. Int. J. Comput. Vis. 122, 411 (2017)

    Article  Google Scholar 

  53. P. Williams, “Demystifying Deep Convolutional Neural Networks for Sonar Image Classification,” in Proceedings of the 4th Underwater Acoustics Conference (2019), vol. 3, p. 513

  54. R. Yan, F. Ren, Z. Wang, L. Wang, T. Zhang, Y. Liu, X. Rao, C. Zheng, F. Zhang, Breast cancer histopathological image classification using a hybrid deep neural network. Methods 173, 52 (2020)

    Article  CAS  Google Scholar 

  55. L. Alzubaidi, J. Zhang, A.J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M.A. Fadhel, M. Al-Amidie, L. Farhan, Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53 (2021)

  56. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org

  57. P. Hirel, Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212 (2015)

    Article  CAS  Google Scholar 

  58. V. Favre-Nicolin, G. Girard, S. Leake, J. Carnis, Y. Chushkin, J. Kieffer, P. Paleo, M.-I. Richard, PyNX: High-performance computing toolkit for coherent x-ray imaging based on operators. J. Appl. Crystallogr. 53, 1404 (2020)

    Article  CAS  Google Scholar 

  59. V. Favre-Nicolin, J. Coraux, M.-I. Richard, H. Renevier, Fast computation of scattering maps of nanostructures using graphical processing units. J. Appl. Crystallogr. 44, 635 (2011)

    Article  CAS  Google Scholar 

  60. O. Mandula, M. Elzo Aizarna, J. Eymery, M. Burghammer, V. Favre-Nicolin, PyNX.Ptycho: A computing library for x-ray coherent diffraction imaging of nanostructures. J. Appl. Crystallogr. 49, 1842 (2016)

    Article  CAS  Google Scholar 

  61. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)

    Article  CAS  Google Scholar 

  62. S.O. Hruszkewycz, M.V. Holt, M. Allain, V. Chamard, S.M. Polvino, C.E. Murray, P.H. Fuoss, Efficient modeling of Bragg coherent x-ray nanobeam diffraction. Opt. Lett. 40, 3241 (2015)

    Article  CAS  Google Scholar 

  63. D.B. Williams, C.B. Carter, “The Transmission Electron Microscope,” in Transmission Electron Microscopy: A Textbook for Materials Science (Springer, Boston, 1996), p. 3

    Google Scholar 

  64. Y. Xie, D. Richmond, Pre-training on grayscale imagenet improves medical image classification, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11134 LNCS (2019), p. 476

  65. M. Talo, U.B. Baloglu, O. Yıldırım, U. Rajendra Acharya, Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176 (2019)

    Article  Google Scholar 

  66. J.W. Lee, W.B. Park, J.H. Lee, S.P. Singh, K.-S. Sohn, A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns. Nat. Commun. 11, 86 (2020)

    Article  CAS  Google Scholar 

  67. T. Holm-Jensen, T.M. Hansen, Linear waveform tomography inversion using machine learning algorithms. Math. Geosci. 52, 31 (2020)

    Article  Google Scholar 

  68. M.J. Cherukara, T. Zhou, Y. Nashed, P. Enfedaque, A. Hexemer, R.J. Harder, M.V. Holt, AI-enabled high-resolution scanning coherent diffraction imaging. Appl. Phys. Lett. 117, 044103 (2020). https://doi.org/10.1063/5.0013065

    Article  CAS  Google Scholar 

  69. O. Furat, M. Wang, M. Neumann, L. Petrich, M. Weber, C.E. Krill, V. Schmidt, Machine learning techniques for the segmentation of tomographic image data of functional materials. Front. Mater. 6, 145 (2019). https://doi.org/10.3389/fmats.2019.00145

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory. This work was performed at the Center for Nanoscale Materials and the Advanced Photon Source. The use of the Center for Nanoscale Materials and Advanced Photon Source, both Office of Science user facilities, was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357. This work was also supported by Argonne LDRD 2018–019-N0: A.I C.D.I: Atomistically Informed Coherent Diffraction Imaging and by the US Department of Energy, Office of Science, Office of Basic Energy Sciences Data, Artificial Intelligence and Machine Learning at DOE Scientific User Facilities program under Award No. 34532.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Judge, Subramanian Sankaranarayanan or Mathew J. Cherukara.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Consent given by all authors.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Judge, W., Chan, H., Sankaranarayanan, S. et al. Defect identification in simulated Bragg coherent diffraction imaging by automated AI. MRS Bulletin 48, 124–133 (2023). https://doi.org/10.1557/s43577-022-00342-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00342-1

Keywords

Navigation