Skip to main content

All-electrochemical synthesis of tunable fine-structured nanoporous copper films

Abstract

Nanoporous copper (np-Cu) films that feature fine ligament length scales and high surface area are prepared using an all-electrochemical approach. The two-step routine involves initially the electrodeposition of CuxZn(100−x) precursor alloy films with controlled thickness and composition from a pyrophosphate bath. This is followed by a selective oxidative removal or dealloying of Zn that leads to a surface area increase (by up to 22 times per one µm thickness of the precursor alloy). In this article, we present a systematic investigation of the impact of three factors on the as-synthesized np-Cu structure: (1) dealloying bath composition, (2) atomic composition (at.%) of precursor alloy, and (3) addition of Ni. Our results show that varying the dealloying bath composition allows for tunable ligament and pore sizes that are due to the anion-induced (ClO4, SO42−, or Cl) modified surface diffusivity of Cu. The increase in surface area is also proportionally scalable by modifying the Cu content (12–42 at.%) in the precursor alloy. Thus, np-Cu films with porosity length scales in the range of 20–33 nm were obtained. A further np-Cu length scale refinement down to 10–12 nm was achieved after dealloying of a ternary Cu–Zn–Ni(3%) alloy. Overall, the strict parameter control yields a wide range of nano-scaled np-Cu films with specific surface characteristics, which may be suitable for various applications including microelectronic packaging, sensing, and catalysis.

Impact statement

We are presenting the first (to the best of our knowledge) comprehensive study on a proposed all-electrochemical approach for the synthesis of nanoporous (np) Cu films with controllable thickness, porosity length scale, and pore-ligament ratio (pore-volume). The novelty of this approach is the use of electrochemical means to synthesize the precursor alloy (Cu–Zn in this work, also Cu–Mn, Cu–Al, etc.) followed by its subsequent dealloying, as opposed to most other approaches that employ dealloying of commercially available bulk precursor alloys and/or thin alloy films deposited in ultrahigh vacuum. The cost-effective use of electrodeposition routines allows for strict composition, thickness, and shape control of the deposit. Also, the deposition of precursor alloys with a desired composition (in turn) enables the development of np-Cu films with controlled pore-ligament length scale as well as pore-ligament ratio. Finally, the proposed approach allows for fine-tuning of the structure, morphology, and ligament/surface elemental content of the as-synthesized np-Cu structure by introducing additional doping metals (Ni) into the precursor alloy. Overall, the systematic study of the proposed approach largely enables versatile and scalable synthetic routes for the preparation of np-Cu-based architectures for a variety of applications ranging from electrocatalysis (CO2 fixation, H2 energy, fuel cells), sensing and actuation (NO3 reduction, NO2 analysis), environmental remediation (tap water purification from toxic compounds), and 2.5/3D electronic packaging (realization of Cu-on-Cu bonding or defect-free and limited in Sn, Cu-Sn micro-bonding in miniaturized devices).

Graphical abstract

Preparation of fine-structured nanoporous copper films using an all-electrochemical method.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Data availability

The authors declare that the data supporting the findings of this study are available within this article and its supplementary information files. Also, all raw data files are available upon request from the authors.

References

  1. T. Juarez, J. Biener, J. Weissmüller, A.M. Hodge, Adv. Eng. Mater. 19, 1700389 (2017)

    Article  CAS  Google Scholar 

  2. A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Int. J. Heat Mass Transf. 45, 1017 (2002)

    CAS  Article  Google Scholar 

  3. A. Wittstock, J. Biener, M. Bäumer, Phys. Chem. Chem. Phys. 12, 12919 (2010)

    CAS  Article  Google Scholar 

  4. T. Jibowu, Front. Nanosci. Nanotechnol. 2, 165 (2016)

    Google Scholar 

  5. J. Zhang, C.M. Li, Chem. Soc. Rev. 41, 7016 (2012)

    CAS  Article  Google Scholar 

  6. D. Li, Y. Zhu, H. Wang, Y. Ding, Sci. Rep. 3, 1 (2013)

    Google Scholar 

  7. T.T. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko, A.I. Frenkel, P.J. Kenis, A.A. Gewirth, J. Am. Chem. Soc. 140, 5791 (2018)

    CAS  Article  Google Scholar 

  8. Y. Xie, N. Dimitrov, Appl. Catal. B 263, 118366 (2020)

    CAS  Article  Google Scholar 

  9. Y.X. Xie, Y. Yang, D.A. Muller, H.D. Abruna, N. Dimitrov, J.Y. Fang, ACS Catal. 10, 9967 (2020)

    CAS  Article  Google Scholar 

  10. Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, Y. Ding, Electrochem. Commun. 11, 1365 (2009)

    CAS  Article  Google Scholar 

  11. A.M. Ahmed, M. Shaban, Mater. Res. Express 7, 015084 (2020)

    CAS  Article  Google Scholar 

  12. H.-J. Jin, X.-L. Wang, S. Parida, K. Wang, M. Seo, J.R. Weissmüller, Nano Lett. 10, 187 (2010)

    CAS  Article  Google Scholar 

  13. I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12, 908 (2019)

    CAS  Article  Google Scholar 

  14. K. Mohan, N. Shahane, R. Liu, V. Smet, A. Antoniou, JOM 70, 2192 (2018)

    Article  Google Scholar 

  15. K. Guth, D. Siepe, J. Görlich, H. Torwesten, R. Roth, F. Hille, F. Umbach, in Proceedings of PCIM (2010), p. 232

  16. M.-S. Kim, H. Nishikawa, Mater. Sci. Eng. A 645, 264 (2015)

    CAS  Article  Google Scholar 

  17. S. Campisi, M. Schiavoni, C.E. Chan-Thaw, A. Villa, Catalysts 6, 185 (2016)

    Article  CAS  Google Scholar 

  18. K. Mohan, N. Shahane, P.M. Raj, A. Antoniou, V. Smet, R. Tummala, in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE, 2017), p. 3083

  19. G. Pia, F. Delogu, Acta Mater. 99, 29 (2015)

    CAS  Article  Google Scholar 

  20. K. Mohan, Sintered Nanoporous Copper Die-Attach Interconnections: Synthesis and Characterization (Georgia Institute of Technology, Atlanta, 2020)

    Google Scholar 

  21. L. Lu, Microchim. Acta 186, 664 (2019)

    Article  CAS  Google Scholar 

  22. F. Gao, Z. Gu, Handbook of Nanoparticles (Springer, Cham, 2016), p. 661

    Book  Google Scholar 

  23. R.A. Sosa, K. Mohan, L. Nguyen, R. Tummala, A. Antoniou, V. Smet, in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) (IEEE, 2019), p. 655

  24. K. Mohan, N. Shahane, R. Sosa, S. Khan, P.M. Raj, A. Antoniou, V. Smet, R. Tummala, in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC) (IEEE, 2018), p. 301

  25. N. Shahane, K. Mohan, G. Ramos, A. Kilian, R. Taylor, F. Wei, P. Raj, A. Antoniou, V. Smet, R. Tummala, in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (IEEE, 2017), p. 968

  26. N. Shahane, K. Mohan, R. Behera, A. Antoniou, P.R. Markondeya, V. Smet, R. Tummala, in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (IEEE, 2016), p. 829

  27. W.-L. Chiu, C.-M. Liu, Y.-S. Haung, C. Chen, Mater. Lett. 164, 5 (2016)

    CAS  Article  Google Scholar 

  28. K. Nanda, Pramana 72, 617 (2009)

    CAS  Article  Google Scholar 

  29. Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian, J. Phys. Chem. C 113, 6694 (2009)

    CAS  Article  Google Scholar 

  30. F. Chen, X. Chen, L. Zou, Y. Yao, Y. Lin, Q. Shen, E.J. Lavernia, L. Zhang, Mater. Sci. Eng. A 660, 241 (2016)

    CAS  Article  Google Scholar 

  31. J. Hayes, A. Hodge, J. Biener, A. Hamza, K. Sieradzki, J. Mater. Res. 21, 2611 (2006)

    CAS  Article  Google Scholar 

  32. E. Castillo, N. Dimitrov, Electrochem 2, 520 (2021)

    CAS  Article  Google Scholar 

  33. F. Jia, C. Yu, K. Deng, L. Zhang, J. Phys. Chem. C 111, 8424 (2007)

    CAS  Article  Google Scholar 

  34. N.T. Tuan, J. Park, J. Lee, J. Gwak, D. Lee, Corros. Sci. 80, 7 (2014)

    CAS  Article  Google Scholar 

  35. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450 (2001)

    CAS  Article  Google Scholar 

  36. S. Parida, D. Kramer, C. Volkert, H. Rösner, J. Erlebacher, J. Weissmüller, Phys. Rev. Lett. 97, 035504 (2006)

    CAS  Article  Google Scholar 

  37. D.C. Hamman, A. Hamnett, W. Vielstich, Electrochemistry (Wiley-VCH, Weinheim, 2007), p. 96

    Google Scholar 

  38. R. Vajtai, Springer Handbook of Nanomaterials (Springer, Berlin, 2013)

    Book  Google Scholar 

  39. R. Özdemir, İH. Karahan, Appl. Surf. Sci. 318, 314 (2014)

    Article  CAS  Google Scholar 

  40. M. Den Exter, Palladium Membrane Technology Hydrogen Production, Carbon Capture and Other Application (Elsevier, Amsterdam, 2014), p. 43

    Google Scholar 

  41. V.S. Sarma, K. Sivaprasad, D. Sturm, M. Heilmaier, Mater. Sci. Eng. A 489, 253 (2008)

    Article  CAS  Google Scholar 

  42. E. Castillo, N. Dimitrov, J. Electrochem. Soc. 168, 062513 (2021)

    CAS  Article  Google Scholar 

  43. N. Wang, Y. Pan, S. Wu, E. Zhang, W. Dai, RSC Adv. 7, 43255 (2017)

    CAS  Article  Google Scholar 

  44. I.C. Cheng, A.M. Hodge, Adv. Eng. Mater. 14, 219 (2012)

    CAS  Article  Google Scholar 

  45. M. Hakamada, M. Mabuchi, Crit. Rev. Solid State Mater. Sci. 38, 262 (2013)

    CAS  Article  Google Scholar 

  46. H.-J. Qiu, L. Peng, X. Li, H. Xu, Y. Wang, Corros. Sci. 92, 16 (2015)

    CAS  Article  Google Scholar 

  47. X. Luo, R. Li, J. Zong, Y. Zhang, H. Li, T. Zhang, Appl. Surf. Sci. 305, 314 (2014)

    CAS  Article  Google Scholar 

  48. C. Zhao, X. Wang, Z. Qi, H. Ji, Z. Zhang, Corros. Sci. 52, 3962 (2010)

    CAS  Article  Google Scholar 

  49. F. Jia, J. Zhao, X. Yu, J. Power Sources 222, 135 (2013)

    CAS  Article  Google Scholar 

  50. A. Dursun, D. Pugh, S. Corcoran, J. Electrochem. Soc. 150, B355 (2003)

    CAS  Article  Google Scholar 

  51. Z. Dan, F. Qin, S.-I. Yamaura, G. Xie, A. Makino, N. Hara, J. Electrochem. Soc. 161, C120 (2014)

    CAS  Article  Google Scholar 

  52. A.A. Vega, R.C. Newman, J. Electrochem. Soc. 161, C1 (2013)

    Article  CAS  Google Scholar 

  53. Z. Dan, F. Qin, Y. Sugawara, I. Muto, N. Hara, Microporous Mesoporous Mater. 165, 257 (2013)

    CAS  Article  Google Scholar 

  54. E. Herrero, J. Clavilier, J.M. Feliu, A. Aldaz, J. Electroanal. Chem. 410, 125 (1996)

    Article  Google Scholar 

  55. Y. Liu, S. Bliznakov, N. Dimitrov, J. Phys. Chem. C 113, 12362 (2009)

    CAS  Article  Google Scholar 

  56. N. Mayet, K. Servat, K.B. Kokoh, T.W. Napporn, Surfaces 2, 257 (2019)

    CAS  Article  Google Scholar 

  57. R. Vasilic, N. Vasiljevic, N. Dimitrov, J. Electroanal. Chem. 580, 203 (2005)

    CAS  Article  Google Scholar 

  58. S. Hashimoto, T. Sakurada, M. Suzuki, J. Surf. Anal. 14, 428 (2008)

    CAS  Google Scholar 

  59. S.S. Welborn, J.S. Corsi, L. Wang, A. Lee, J. Fu, E. Detsi, J. Mater. Chem. A 9, 19994 (2021)

    CAS  Article  Google Scholar 

  60. Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, J. Phys. Chem. C 113, 12629 (2009)

    CAS  Article  Google Scholar 

  61. W. Liu, S. Zhang, N. Li, J. Zheng, Y. Xing, Microporous Mesoporous Mater. 138, 1 (2011)

    CAS  Article  Google Scholar 

  62. T. Lyman, H.E. Boyer, P.M. Unterweiser, Metals Handbook (American Society for Metals, Cleveland, 1948)

    Google Scholar 

  63. J. Zeng, F. Zhao, M. Li, C.-H. Li, T.R. Lee, W.-C. Shih, J. Mater. Chem. C 3, 247 (2015)

    CAS  Article  Google Scholar 

  64. T. Aburada, J.M. Fitz-Gerald, J.R. Scully, Corros. Sci. 53, 1627 (2011)

    CAS  Article  Google Scholar 

  65. K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, J. Erlebacher, J. Electrochem. Soc. 149, B370 (2002)

    CAS  Article  Google Scholar 

  66. M. Kamundi, L. Bromberg, E. Fey, C. Mitchell, M. Fayette, N. Dimitrov, J. Phys. Chem. C 116, 14123 (2012)

    CAS  Article  Google Scholar 

  67. M. Kowalski, P. Spencer, J. Phase Equilib. 14, 432 (1993)

    CAS  Article  Google Scholar 

  68. Y. Liu, S. Bliznakov, N. Dimitrov, J. Electrochem. Soc. 157, K168 (2010)

    CAS  Article  Google Scholar 

  69. B. Hecker, C. Dosche, M. Oezaslan, J. Phys. Chem. C 122, 26378 (2018)

    CAS  Article  Google Scholar 

  70. T. Egle, C. Barroo, N. Janvelyan, A.C. Baumgaertel, A.J. Akey, M.M. Biener, C.M. Friend, D.C. Bell, J. Biener, ACS Appl. Mater. Interfaces 9, 25615 (2017)

    CAS  Article  Google Scholar 

  71. T. Kou, C. Jin, C. Zhang, J. Sun, Z. Zhang, RSC Adv. 2, 12636 (2012)

    CAS  Article  Google Scholar 

  72. K. Chavez, D. Hess, J. Electrochem. Soc. 148, G640 (2001)

    CAS  Article  Google Scholar 

  73. M. Hakamada, M. Mabuchi, J. Alloys Compd. 485, 583 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Semiconductor Research Corporation (SRC) and Binghamton University through the Center for Heterogeneous Integration Research on Packaging (CHIRP) Task 2878.011. The authors also acknowledge Krystal Lee for assistance with the XRD experiments and Anju Sharma for her help with XPS characterization and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

E.C.—conceptualization, literature review, methodology, resources, data curation, validation, investigation, visualization, writing (original draft, review and editing); J.Z.—data curation, validation, writing (review and editing); N.D.—supervision, conceptualization, project administration, funding acquisition, writing (review and editing).

Corresponding author

Correspondence to Nikolay Dimitrov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 433 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castillo, E., Zhang, J. & Dimitrov, N. All-electrochemical synthesis of tunable fine-structured nanoporous copper films. MRS Bulletin (2022). https://doi.org/10.1557/s43577-022-00323-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-022-00323-4

Keywords

  • Electrodeposition
  • Cu–Zn
  • Dealloying
  • Nanoporous Cu
  • Interconnects