Skip to main content

Development of sorbent materials for direct air capture of CO2

Abstract

Building a carbon–neutral world requires the removal of excess CO2 that has already been dumped into the atmosphere. The technologies have been well established to remove carbon dioxide directly from ambient air, or “direct air capture” (DAC). DAC is still in its infancy, with many challenges remaining. Sorbents are central to the capture of CO2 from ambient air. Many sorbents have been reported to take up CO2, but they all have advantages and disadvantages. Recent advances in material synthesis and surface chemistry have resulted in new generations of CO2 sorbents. Development needs to progress quickly, because global warming will not wait. We summarize recent progress on designed sorbents for CO2 capture from ambient air. There are mainly six typical technologies for DAC, including physical sorption, sorption by strong bases, sorption by amine-modified materials, sorption by aqueous amino acid solution followed by precipitation with a guanidine compound, moisture-swing sorption, and electrochemical-swing sorption. Existing research works have put forward future perspectives and directions of sorbent materials for DAC technologies.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. T.F. Stocker, A. Schmittner, Nature 388, 862 (1997). https://doi.org/10.1038/42224

    CAS  Article  Google Scholar 

  2. R.K. Pachauri, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, Geneva, 2014)

  3. S. Choi, J.H. Drese, C.W. Jones, ChemSusChem 2, 796 (2009). https://doi.org/10.1002/cssc.200900036

    CAS  Article  Google Scholar 

  4. Y. Xu, C. Luo, H. Sang, B. Lu, F. Wu, X. Li, L. Zhang, Chem. Eng. J. 435 (Pt. 2), 134960 (2022). https://doi.org/10.1016/j.cej.2022.134960

    CAS  Article  Google Scholar 

  5. Y. Xu, C. Shen, B. Lu, C. Luo, F. Wu, X. Li. L. Zhang, Carbon Capture Sci. Technol. 1, 100015 (2021). https://doi.org/10.1016/j.ccst.2021.100015

    Article  Google Scholar 

  6. X. Shi, H. Xiao, H. Azarabadi, J. Song, X. Wu, X. Chen, K.S. Lackner, Angew. Chem. Int. Ed. 59(18), 6984 (2020). https://doi.org/10.1002/anie.201906756

    CAS  Article  Google Scholar 

  7. K. Lackner, H.-J. Ziock, P. Grimes, Carbon Dioxide Extraction from Air: Is It An Option? (Los Alamos National Lab, New Mexico, 1999)

    Google Scholar 

  8. D.W. Keith, M. Ha-Duong, J.K. Stolaroff, Clim. Change 74, 17 (2006). https://doi.org/10.1007/s10584-005-9026-x

    CAS  Article  Google Scholar 

  9. K.S. Lackner, Eur. Phys. J. Spec. Top. 176, 93 (2009). https://doi.org/10.1140/epjst/e2009-01150-3

    Article  Google Scholar 

  10. V.A. Tuan, C.H. Lee, Vietnam J. Chem. 56, 197 (2018). https://doi.org/10.1002/vjch.201800013

    CAS  Article  Google Scholar 

  11. International Energy Agency (IEA), Special Report on Carbon Capture Utilisation and Storage, CCUS in Clean Energy Transitions (IEA, Paris, 2020). https://www.iea.org/reports/ccus-in-clean-energy-transitions

  12. K.S. Lackner, H. Azarabadi, Ind. Eng. Chem. Res. 60, 8196 (2021). https://doi.org/10.1021/acs.iecr.0c04839

    CAS  Article  Google Scholar 

  13. K.S. Lackner, S. Brennan, J.M. Matter, A.-H.A. Park, A. Wright, B. van der Zwaan, Proc. Natl. Acad. Sci. U.S.A109(33), 13156 (2012). https://doi.org/10.1073/pnas.1108765109

    Article  Google Scholar 

  14. O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns, K. Adil, M. Eddaoudi, Nat. Commun. 5, 4228 (2014). https://doi.org/10.1038/ncomms5228

    CAS  Article  Google Scholar 

  15. M. Oschatz, M. Antonietti, Energy Environ. Sci. 11, 57 (2018). https://doi.org/10.1039/C7EE02110K

    CAS  Article  Google Scholar 

  16. V. Presser, J. McDonough, S.-H. Yeon, Y. Gogotsi, Energy Environ. Sci. 4, 3059 (2011). https://doi.org/10.1039/C1EE01176F

    CAS  Article  Google Scholar 

  17. D.W. Keith, M. Ha-Duong, J.K. Stolaroff, Clim. Change 74, 17 (2006)

    CAS  Article  Google Scholar 

  18. R. Baciocchi, G. Storti, M. Mazzotti, Chem. Eng. Process. 45, 1047 (2006)

    CAS  Article  Google Scholar 

  19. W. Chaikittisilp, H.-J. Kim, C.W. Jones, Energy Fuels 25, 5528 (2011)

    CAS  Article  Google Scholar 

  20. S.A. Didas, A.R. Kulkarni, D.S. Sholl, C.W. Jones, ChemSusChem 5, 2058 (2012)

    CAS  Article  Google Scholar 

  21. M.A. Sakwa-Novak, C.W. Jones, ACS Appl. Mater. Interfaces 6, 9245 (2014)

    CAS  Article  Google Scholar 

  22. A. Holewinski, M.A. Sakwa-Novak, C.W. Jones, J. Am. Chem. Soc. 137, 11749 (2015). https://doi.org/10.1021/jacs.5b06823

    CAS  Article  Google Scholar 

  23. C.A. Seipp, N.J. Williams, M.K. Kidder, R. Custelcean, Angew. Chem. Int. Ed. 56, 1042 (2017). https://doi.org/10.1002/anie.201610916

    CAS  Article  Google Scholar 

  24. F.M. Brethomé, N.J. Williams, C.A. Seipp, M.K. Kidder, R. Custelcean, Nat. Energy 51, 23338 (2018)

    Google Scholar 

  25. R. Custelcean, Chem. Sci. (2021). https://doi.org/10.1039/D1SC04097A

    Article  Google Scholar 

  26. R. Custelcean, K.A. Garrabrant, P. Agullo, N.J. Williams, Cell Rep. Phys. Sci. 2, 100385 (2021). https://doi.org/10.1016/j.xcrp.2021.100385

    CAS  Article  Google Scholar 

  27. R. Custelcean, N.J. Williams, K.A. Garrabrant, P. Agullo, F.M. Brethomé, H.J. Martin, M.K. Kidder, Ind. Eng. Chem. Res. 58(51), 23338 (2019). https://doi.org/10.1021/acs.iecr.9b04800

    CAS  Article  Google Scholar 

  28. N.J. Williams, C.A. Seipp, F.M. Brethomé, Y.-Z. Ma, A.S. Ivanov, V.S. Bryantsev, M.K. Kidder, H.J. Martin,  E. Holguin, K.A. Garrabrant, R. Custelcean, Chemistry 5(3), 719 (2019). https://doi.org/10.1016/j.chempr.2018.12.025

    CAS  Article  Google Scholar 

  29. T. Wang, K.S. Lackner, A. Wright, Environ. Sci. Technol. 45, 6670 (2011). https://doi.org/10.1021/es201180v

    CAS  Article  Google Scholar 

  30. X. Shi, Q. Li, T. Wang, K.S. Lackner, PLoS One 12, e0179828 (2017). https://doi.org/10.1371/journal.pone.0179828

    CAS  Article  Google Scholar 

  31. J. Song, J. Liu, W. Zhao, Y. Chen, H. Xiao, X. Shi, Y. Liu, X. Chen, Ind. Eng. Chem. Res. 57(14), 4941 (2018). https://doi.org/10.1021/acs.iecr.8b00064

    CAS  Article  Google Scholar 

  32. X. Shi, H. Xiao, X. Chen, K.S. Lackner, Chem. Eur. J. 22, 18326 (2016)

    CAS  Article  Google Scholar 

  33. X. Shi, H. Xiao, K. Kanamori, A. Yonezu, K.S. Lackner, X. Chen, Joule 4(8), 1823 (2020). https://doi.org/10.1016/j.joule.2020.07.005

    CAS  Article  Google Scholar 

  34. J. Song, L. Zhu, X. Shi, Y. Liu, H. Xiao, X. Chen, Energy Fuels 33(7), 6562 (2019). https://doi.org/10.1021/acs.energyfuels.9b00863

    CAS  Article  Google Scholar 

  35. M. Armstrong, X. Shi, B. Shan, K. Lackner, B. Mu, AIChE J. 65, 214 (2019). https://doi.org/10.1002/aic.16418

    CAS  Article  Google Scholar 

  36. X. Shi, H. Xiao, X. Liao, M. Armstrong, X. Chen, K.S. Lackner, J. Chem. Phys. 149, 164708 (2018). https://doi.org/10.1063/1.5027105

    CAS  Article  Google Scholar 

  37. S. Voskian, T.A. Hatton, Energy Environ. Sci. 12, 3530 (2019). https://doi.org/10.1039/C9EE02412C

    CAS  Article  Google Scholar 

  38. P. Singh, J.H. Rheinhardt, J.Z. Olson, P. Tarakeshwar, V. Mujica, D.A. Buttry, J. Am. Chem. Soc. 139(3), 1033 (2017). https://doi.org/10.1021/jacs.6b10806

    CAS  Article  Google Scholar 

  39. D.H. Apaydin, M. Gora, E. Portenkirchner, K.T. Oppelt, H. Neugebauer, M. Jakesova, E.D. Głowacki, J. Kunze-Liebhäuser, M. Zagorska, J. Mieczkowski, N.S. Sariciftci, ACS Appl. Mater. Interfaces 9, 12919 (2017). https://doi.org/10.1021/acsami.7b01875

    CAS  Article  Google Scholar 

  40. J.H. Rheinhardt, P. Singh, P. Tarakeshwar, D.A. Buttry, ACS Energy Lett. 2, 454 (2017). https://doi.org/10.1021/acsenergylett.6b00608

    CAS  Article  Google Scholar 

  41. A. Kumar, D.G. Madden, M. Lusi, K.-J. Chen, E.A. Daniels, T. Curtin, J.J. Perry IV, M.J. Zaworotko, Angew. Chem. Int. Ed. 54(48), 14372 (2015)

    CAS  Article  Google Scholar 

  42. D.G. Madden, H.S. Scott, A. Kumar, K.-J. Chen, R. Sanii, A. Bajpai, M. Lusi, T. Curtin, J.J. Perry, M.J. Zaworotko, Philos. Trans. R. Soc. A 375, 20160025 (2017)

    Article  Google Scholar 

  43. N. Masoud, G. Bordanaba-Florit, T. van Haasterecht, J.H. Bitter, Ind. Eng. Chem. Res. (2021). https://doi.org/10.1021/acs.iecr.1c01229

    Article  Google Scholar 

  44. J. Wang, H. Huang, M. Wang, L. Yao, W. Qiao, D. Long, L. Ling, Ind. Eng. Chem. Res. 54(19), 5319 (2015). https://doi.org/10.1021/acs.iecr.5b01060

    CAS  Article  Google Scholar 

  45. K.S. Lackner, P. Grimes, H. Ziock, SourceBook-The Energy Ind. J. Issues 57, 6 (1999)

    Google Scholar 

  46. D.W. Keith, G. Holmes, D. St. Angelo, K. Heidel, Joule 2, 1573 (2018). https://doi.org/10.1016/j.joule.2018.05.006

    CAS  Article  Google Scholar 

  47. N. McQueen, P. Kelemen, G. Dipple, P. Renforth, J. Wilcox, Nat. Commun. 11, 3299 (2020). https://doi.org/10.1038/s41467-020-16510-3

    CAS  Article  Google Scholar 

  48. D.J. Beerling, E.P. Kantzas, M.R. Lomas, P. Wade, R.M. Eufrasio, P. Renforth, B. Sarkar, M.G. Andrews, R.H. James, C.R. Pearce, J.-F. Mercure, H. Pollitt, P.B. Holden, N.R. Edwards, M. Khanna, L. Koh, S. Ouegan, N.F. Pidgeon, I.A. Janssens, J. Hansen, S.A. Banwart, Nature 583, 242 (2020). https://doi.org/10.1038/s41586-020-2448-9

    CAS  Article  Google Scholar 

  49. K.A. Mumford, Y. Wu, K.H. Smith, G.W. Stevens, Front. Chem. Sci. Eng. 9, 125 (2015). https://doi.org/10.1007/s11705-015-1514-6

    CAS  Article  Google Scholar 

  50. A. Goeppert, S. Meth, G.S. Prakash, G.A. Olah, Energy Environ. Sci. 3, 1949 (2010)

    CAS  Article  Google Scholar 

  51. M.B. Yue, L.B. Sun, Y. Cao, Y. Wang, Z.J. Wang, J.H. Zhu, Chem. A Eur. J. 14(11), 3442 (2008)

    CAS  Article  Google Scholar 

  52. S. Choi, M.L. Gray, C.W. Jones, ChemSusChem 4, 628 (2011). https://doi.org/10.1002/cssc.201000355

    CAS  Article  Google Scholar 

  53. Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Ind. Eng. Chem. Res. 49, 359 (2010). https://doi.org/10.1021/ie900837t

    CAS  Article  Google Scholar 

  54. X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Energy Fuels 16, 1463 (2002)

    CAS  Article  Google Scholar 

  55. S. Choi, M.L. Gray, C.W. Jones, ChemSusChem 4, 628 (2011)

    CAS  Article  Google Scholar 

  56. Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Chem. Eng. Sci. 65, 3695 (2010)

    CAS  Article  Google Scholar 

  57. J.A. Wurzbacher, C. Gebald, A. Steinfeld, Energy Environ. Sci. 4, 3584 (2011)

    CAS  Article  Google Scholar 

  58. C. Gebald, J.A. Wurzbacher, P. Tingaut, T. Zimmermann, A. Steinfeld, Environ. Sci. Technol. 45, 9101 (2011). https://doi.org/10.1021/es202223p

    CAS  Article  Google Scholar 

  59. M.A. Sakwa-Novak, S. Tan, C.W. Jones, ACS Appl. Mater. Interfaces 7, 24748 (2015). https://doi.org/10.1021/acsami.5b07545

    CAS  Article  Google Scholar 

  60. M.E. Potter, K.M. Cho, J.J. Lee, C.W. Jones, ChemSusChem 10, 2192 (2017). https://doi.org/10.1002/cssc.201700115

    CAS  Article  Google Scholar 

  61. B. Wang, R.-B. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 142, 14399 (2020). https://doi.org/10.1021/jacs.0c06473

    CAS  Article  Google Scholar 

  62. H. He, W. Li, M. Lamson, M. Zhong, D. Konkolewicz, C.M. Hui, K. Yaccato, T. Rappold, G. Sugar, N.E. David, K. Damodaran, S. Natesakhawat, H. Nulwala, K. Matyjaszewski, Polymer 55(1), 385 (2014). https://doi.org/10.1016/j.polymer.2013.08.002

    CAS  Article  Google Scholar 

  63. L. Legrand, O. Schaetzle, R.C.F. de Kler, H.V.M. Hamelers, Environ. Sci. Technol. 52, 9478 (2018). https://doi.org/10.1021/acs.est.8b00980

    CAS  Article  Google Scholar 

  64. M. Mahmoudkhani, D.W. Keith, Int. J. Greenh. Gas Control. 3, 376 (2009). https://doi.org/10.1016/j.ijggc.2009.02.003

    CAS  Article  Google Scholar 

  65. V. Nikulshina, N. Ayesa, M.E. Gálvez, A. Steinfeld, Chem. Eng. J. 140, 62 (2008). https://doi.org/10.1016/j.cej.2007.09.007

    CAS  Article  Google Scholar 

  66. K.Z. House, A.C. Baclig, M. Ranjan, E.A. van Nierop, J. Wilcox, H.J. Herzog, Proc. Natl. Acad. Sci. U.S.A. 108(51), 20428 (2011)

    CAS  Article  Google Scholar 

  67. A. Goeppert, M. Czaun, R.B. May, G.K. Surya Prakash, G.A. Olah, S.R. Narayanan, J. Am. Chem. Soc. 133(50), 20164 (2011). https://doi.org/10.1021/ja2100005

    CAS  Article  Google Scholar 

  68. S. Meth, A. Goeppert, G.K.S. Prakash, G.A. Olah, Energy Fuels 26, 3082 (2012). https://doi.org/10.1021/ef300289k

    CAS  Article  Google Scholar 

  69. X. Wang, X. Ma, V. Schwartz, J.C. Clark, S.H. Overbury, S. Zhao, X. Xu, C. Song, Phys. Chem. Chem. Phys. 14, 1485 (2012). https://doi.org/10.1039/C1CP23366A

    CAS  Article  Google Scholar 

  70. Y. Kuwahara, D.-Y. Kang, J.R. Copeland, P. Bollini, C. Sievers, T. Kamegawa, H. Yamashita, C.W. Jones, Chem. Eur. J. 18(52), 16649 (2012)

    CAS  Article  Google Scholar 

  71. S.H. Pang, L.-C. Lee, M.A. Sakwa-Novak, R.P. Lively, C.W. Jones, J. Am. Chem. Soc. 139, 3627 (2017). https://doi.org/10.1021/jacs.7b00235

    CAS  Article  Google Scholar 

  72. S.H. Pang, R.P. Lively, C.W. Jones, ChemSusChem 11, 2628 (2018). https://doi.org/10.1002/cssc.201800438

    CAS  Article  Google Scholar 

  73. D. Brilman, R. Veneman, Energy Procedia 37, 6070 (2013)

    CAS  Article  Google Scholar 

  74. W. Chaikittisilp, R. Khunsupat, T.T. Chen, C.W. Jones, Ind. Eng. Chem. Res. 50, 14203 (2011)

    CAS  Article  Google Scholar 

  75. Z. Chen, S. Deng, H. Wei, B. Wang, J. Huang, G. Yu, A.C.S. Appl, Mater. Interfaces 5(15), 6937 (2013). https://doi.org/10.1021/am400661b

    CAS  Article  Google Scholar 

  76. L. Keller, B. Ohs, J. Lenhart, L. Abduly, P. Blanke, M. Wessling, Carbon 126, 338 (2018). https://doi.org/10.1016/j.carbon.2017.10.023

    CAS  Article  Google Scholar 

  77. Y. Miao, Z. He, X. Zhu, D. Izikowitz, J. Li, Chem. Eng. J. 426, 131875 (2021). https://doi.org/10.1016/j.cej.2021.131875

    CAS  Article  Google Scholar 

  78. A. Sayari, Y. Belmabkhout, J. Am. Chem. Soc. 132, 6312 (2010)

    CAS  Article  Google Scholar 

  79. C. Gebald, J.A. Wurzbacher, A. Borgschulte, T. Zimmermann, A. Steinfeld, Environ. Sci. Technol. 48, 2497 (2014). https://doi.org/10.1021/es404430g

    CAS  Article  Google Scholar 

  80. L. He, M. Fan, B. Dutcher, S. Cui, X. Shen, Y. Kong, A.G. Russell, P. McCurdy, Chem. Eng. J. 189–190, 13 (2012). https://doi.org/10.1016/j.cej.2012.02.013

    CAS  Article  Google Scholar 

  81. W. Lu, J.P. Sculley, D. Yuan, R. Krishna, H.-C. Zhou, J. Phys. Chem. C 117, 4057 (2013)

    CAS  Article  Google Scholar 

  82. W.R. Lee, S.Y. Hwang, D.W. Ryu, K.S. Lim, S.S. Han, D. Moon, J. Choi, C.S. Hong, Energy Environ. Sci. 7, 744 (2014)

    CAS  Article  Google Scholar 

  83. S. Choi, T. Watanabe, T.-H. Bae, D.S. Sholl, C.W. Jones, J. Phys. Chem. Lett. 3, 1136 (2012)

    CAS  Article  Google Scholar 

  84. P.-Q. Liao et al., Chem. Sci. 7, 6528 (2016). https://doi.org/10.1039/C6SC00836D

    CAS  Article  Google Scholar 

  85. H. Li, K. Wang, D. Feng, Y.-P. Chen, W. Verdegaal, H.-C. Zhou, ChemSusChem 9(19), 2832 (2016). https://doi.org/10.1002/cssc.201600768

    CAS  Article  Google Scholar 

  86. S. Choi, J.H. Drese, P.M. Eisenberger, C.W. Jones, Environ. Sci. Technol. 45, 2420 (2011)

    CAS  Article  Google Scholar 

  87. W. Chaikittisilp, J.D. Lunn, D.F. Shantz, C.W. Jones, Chem. A Eur. J. 17, 10556 (2011)

    CAS  Article  Google Scholar 

  88. X. Wang, J. Song, Y. Chen, H. Xiao, X. Shi, Y. Liu, L. Zhu, Y.-L. He, X. Chen, Ind. Eng. Chem. Res. 59(38), 16507 (2020). https://doi.org/10.1021/acs.iecr.0c03189

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported from the Earth Engineering Center and Center for Advanced Materials for Energy and Environment, Columbia University.

Conflict of interest

All authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Lin, Y. & Chen, X. Development of sorbent materials for direct air capture of CO2. MRS Bulletin (2022). https://doi.org/10.1557/s43577-022-00320-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-022-00320-7

Keywords

  • Direct air capture
  • Negative mission
  • CO2 capture
  • Carbon management
  • Climate change
  • Global warming
  • Sorbent