Skip to main content

Advertisement

Log in

Rational design of hierarchically structured dual-encapsulated CoMoO4 nanosheets via in situ plasma tuning for efficient Li+ storage

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Engineering electrodes with desirable nanostructures are regarded as an urgent challenge to achieve enhanced electrical conductivity, stable structural integrity, and advanced performance for Li+ storage. Various approaches with processing complexity and multiple reactions have suffered serious limitation in industrialization. Here, we develop a facile carbon plasma (C-plasma) strategy combined with controlled reaction temperature to achieve in situ hierarchical metallic nanoparticles and graphene-encapsulated CoMoO4 nanosheets (hCCO). The nano-frameworks of Co3Mo and graphene shell are simultaneously modulated via simply controlling reaction temperature. The incorporation of nanoalloy component effectively enhances the conductivities of nanosheet, and uniformly coated graphene releases the structural stress caused by conversion reaction of metal oxides, maximizing the capacity utilization. The synergetic combination of these advantages enables the synthesized hCCO to deliver excellent electrochemical performances. Our C-plasma exhibits a great potential in tuning nano-architectures with high-performance Li+ storage behavior.

Impact statement

Designing electrode with controllable nano-framework for high-performance lithium-ion batteries is a formidable challenge. A typical strategy to improve the structural integrity and performance of electrode during cycling is to use metallic and carboneous dual encapsulation to integrate the advantages of both encapsulations. Most approaches of dual encapsulation use environmentally hazardous species and long-term annealing with multi-reaction steps, restricting the scalable application. Our work provides a facile carbon plasma (C-plasma) strategy to achieve hierarchical dual encapsulation with tunable nanostructures. The metallic nanostructures and graphene shell can be precisely controlled by simply modulating plasma processing temperature. Moderate temperature (450°C) and rapid C-plasma treatment (30 s) allow for the structural integrity of the resultant hierarchically dual-encapsulated CoMoO4 (hCCO) composites. Our C-plasma-based approach provides binder-free electrode that delivers Li-ion storage with high specific capacity of 641 mA h g−1 with imposing cycling performance for 1000 cycles at 1.6 A g−1. Our C-plasma technique, unveils a novel and simple pathway in tuning nano-architectures with dual encapsulation for high-performance energy-storage materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M.-S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, Carbon 98, 162 (2016)

    Article  CAS  Google Scholar 

  2. Y. Zhao, L.P. Wang, M.T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, Adv. Energy Mater. 7, 1601424 (2017)

    Article  Google Scholar 

  3. Y. Zhang, M. Xie, Y. He, Y. Zhang, L. Liu, T. Hao, Y. Ma, Y. Shi, Z. Sun, N. Liu, Z. John Zhang, Chem. Eng. J. 420, 130469 (2021)

    Article  CAS  Google Scholar 

  4. Y. Wen, Y. Zhu, A. Langrock, A. Manivannan, S.H. Ehrman, C. Wang, Small 9, 2810 (2013)

    Article  CAS  Google Scholar 

  5. R. Mo, D. Rooney, K. Sun, H.Y. Yang, Nat. Commun. 8, 13949 (2017)

    Article  CAS  Google Scholar 

  6. J. Ji, H. Ji, L.L. Zhang, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, Adv. Mater. 25, 4673 (2013)

    Article  CAS  Google Scholar 

  7. C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano 7, 4459 (2013)

    Article  CAS  Google Scholar 

  8. C. Zhang, H. Song, C. Liu, Y. Liu, C. Zhang, X. Nan, G. Cao, Adv. Funct. Mater. 25, 3497 (2015)

    Article  Google Scholar 

  9. N. Mahmood, C. Zhang, F. Liu, J. Zhu, Y. Hou, ACS Nano 7, 10307 (2013)

    Article  CAS  Google Scholar 

  10. C. Tang, Y. Liu, C. Xu, J. Zhu, X. Wei, L. Zhou, L. He, W. Yang, L. Mai, Adv. Funct. Mater. 28, 1704561 (2018)

    Article  Google Scholar 

  11. J. Chang, X. Huang, G. Zhou, S. Cui, P.B. Hallac, J. Jiang, P.T. Hurley, J. Chen, Adv. Mater. 26, 758 (2014)

    Article  CAS  Google Scholar 

  12. L. Shi, C. Pang, S. Chen, M. Wang, K. Wang, Z. Tan, P. Gao, J. Ren, Y. Huang, H. Peng, Z. Liu, Nano Lett. 17, 3681 (2017)

    Article  CAS  Google Scholar 

  13. Y. Zhang, Y. Zhang, Y. Cao, M. Xie, J. Li, A. Balzer, N. Liu, Z. John Zhang, Chem. Eur. J. 27, 12900 (2021)

    Article  CAS  Google Scholar 

  14. X. Sun, G.-P. Hao, X. Lu, L. Xi, B. Liu, W. Si, C. Ma, Q. Liu, Q. Zhang, S. Kaskel, O.G. Schmidt, J. Mater. Chem. A 4, 10166 (2016)

    Article  CAS  Google Scholar 

  15. C. Kim, J.-W. Jung, K.R. Yoon, D.-Y. Youn, S. Park, I.-D. Kim, ACS Nano 10, 11317 (2016)

    Article  CAS  Google Scholar 

  16. F. Zou, Y.-M. Chen, K. Liu, Z. Yu, W. Liang, S.M. Bhaway, M. Gao, Y. Zhu, ACS Nano 10, 377 (2016)

    Article  CAS  Google Scholar 

  17. S. Solchenbach, G. Hong, A.T.S. Freiberg, R. Jung, H.A. Gasteiger, J. Electrochem. Soc. 165, A3304 (2018)

    Article  CAS  Google Scholar 

  18. T. Kim, L.K. Ono, N. Fleck, S.R. Raga, Y. Qi, J. Mater. Chem. A 6, 14449 (2018)

    Article  CAS  Google Scholar 

  19. Z. Li, H. Zhao, P. Lv, Z. Zhang, Y. Zhang, Z. Du, Y. Teng, L. Zhao, Z. Zhu, Adv. Funct. Mater. 28, 1605711 (2018)

    Article  Google Scholar 

  20. Y. Chen, X. Li, X. Zhou, H. Yao, H. Huang, Y.-W. Mai, L. Zhou, Energy Environ. Sci. 7, 2689 (2014)

    Article  CAS  Google Scholar 

  21. C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Adv. Mater. 29, 1702714 (2017)

    Article  Google Scholar 

  22. B. Ouyang, Y. Zhang, X. Xia, R.S. Rawat, H.J. Fan, Mater. Today Nano 3, 28 (2018)

    Article  Google Scholar 

  23. B. Ouyang, D. Chao, G. Jia, Z. Zhang, H.J. Fan, R.S. Rawat, Energy Storage Mater. 18, 462 (2019)

    Article  Google Scholar 

  24. D. Chao, B. Ouyang, P. Liang, T.T.T. Huong, G. Jia, H. Huang, X. Xia, R.S. Rawat, H.J. Fan, Adv. Mater. 30, 1804833 (2018)

    Article  Google Scholar 

  25. N. Bundaleska, D. Tsyganov, A. Dias, E. Felizardo, J. Henriques, F.M. Dias, M. Abrashev, J. Kissovski, E. Tatarova, Phys. Chem. Chem. Phys. 20, 13810 (2018)

    Article  CAS  Google Scholar 

  26. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Appl. Phys. Lett. 79, 2970 (2001)

    Article  CAS  Google Scholar 

  27. K.F. Al-Shboul, S.S. Harilal, A. Hassanein, M. Polek, J. Appl. Phys. 109, 053302 (2011)

    Article  Google Scholar 

  28. S. Yugeswaran, P.V. Ananthapadmanabhan, L. Kumaresan, A. Kuberan, S. Sivakumar, G. Shanmugavelayutham, K. Ramachandran, Ceram. Int. 44, 14789 (2018)

    Article  Google Scholar 

  29. B. Ouyang, D. Chao, G. Jia, Z. Zhang, E. Kan, H.J. Fan, R.S. Rawat, Nano Energy 80, 105557 (2021)

    Article  CAS  Google Scholar 

  30. P.M. Ette, A. Chithambararaj, A.S. Prakash, K. Ramesha, ACS Appl. Mater. Interfaces 12, 11511 (2020)

    Article  CAS  Google Scholar 

  31. E.V. Lobiak, E.V. Shlyakhova, L.G. Bulusheva, P.E. Plyusnin, Y.V. Shubin, A.V. Okotrub, J Alloys Compd. 621, 351 (2015)

    Article  CAS  Google Scholar 

  32. C. Gao, Z. Jiang, P. Wang, L.R. Jensen, Y. Zhang, Y. Yue, Nano Energy 74, 104868 (2020)

    Article  CAS  Google Scholar 

  33. C.T. Cherian, M.V. Reddy, S.C. Haur, B.V.R. Chowdari, ACS Appl. Mater. Interfaces 5, 918 (2013)

    Article  CAS  Google Scholar 

  34. Y. Zhang, B. Ouyang, K. Xu, X. Xia, Z. Zhang, R.S. Rawat, H.J. Fan, Small 14, 1800340 (2018)

    Article  Google Scholar 

  35. B. Ouyang, Y. Wang, Z. Zhang, R.S. Rawat, Electrochim. Acta 194, 151 (2016)

    Article  CAS  Google Scholar 

  36. Y. Chen, B. Liu, W. Jiang, Q. Liu, J. Liu, J. Wang, H. Zhang, X. Jing, J. Power Sources 300, 132 (2015)

    Article  CAS  Google Scholar 

  37. D.W. Dees, S. Kawauchi, D.P. Abraham, J. Prakash, J. Power Sources 189, 263 (2009)

    Article  CAS  Google Scholar 

  38. Y. Son, J. Ma, N. Kim, T. Lee, Y. Lee, J. Sung, S.-H. Choi, G. Nam, H. Cho, Y. Yoo, J. Cho, Adv. Energy Mater. 9, 1803480 (2019)

    Article  Google Scholar 

  39. X. Yu, B. Lu, Z. Xu, Adv. Mater. 26, 1044 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study at Nanjing University of Science and Technology is by China Postdoctoral Science Foundation (No. 2021M701718), by the NSFC (51522206, 11774173, 11574151, 51790492), by the Fundamental Research Funds for the Central Universities (Nos. 30915011203, 30918011334, 30919011248), China, and was also supported by IAEA, Vienna, Austria, Research Contract 22770 (CRP Code F13019) and NIE RS-SAA grant RS 6/18 RSR provided by National Institute of Education, Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erjun Kan or Rajdeep Singh Rawat.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2305 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, B., Wang, Y., Wang, X. et al. Rational design of hierarchically structured dual-encapsulated CoMoO4 nanosheets via in situ plasma tuning for efficient Li+ storage. MRS Bulletin 47, 656–664 (2022). https://doi.org/10.1557/s43577-022-00312-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-022-00312-7

Keywords

Navigation