Skip to main content

Optimization of charge curve for the extreme inhibition of growing microstructures during electrodeposition

Abstract

The formation of branched microstructures during the electrodeposition is a catastrophic event, which hampers the safe utilization of the metallic electrodes in rechargeable batteries. Focusing on the nonlinear growth dynamics of the dendritic microstructures, we tune the rate of the feeding charge against their growth pace to minimize the amount of the dendritic branching, while maintaining a constant feeding charge. The ultimate morphology of the electrodeposits has been shown to be more compact than the conventional uniform charging in terms of the density of the electrodeposits. Due to analytical derivation and the coupled development of the optimal charge form with respect to the natural kinetics of dendritic evolution in real time, we infer that it prevents the branching of the electrodeposits to the greatest extent, during the stochastic evolution of the dendrites.

Impact statement

Taking into account the runaway behavior in the natural growth rate of the dendritic electrodeposition, which is slowest in the initiation (i.e., triggering) stage and is fastest in the final (i.e., short circuit) stage, we tune the rate of the feeding charge in time, inversely for highest compression of the microstructures, while maintaining a constant total charge. The controlled dendritic growth with the constant speed has analytically been proven to lead to the shortest growth compared with any other runaway growth form, while maintaining the same amount of the total charge. Subsequently, the constant rate of growth has been used as the handle to obtain the charge feeding form leading to such rate of growth. Performing stochastic molecular dynamics (MD) simulations, the ultimate morphology of the electrodeposits has been shown to be more compact than the conventional uniform charging in terms of the density of the electrodeposits. In fact, the charge feeding occurs when the density of the growing structure is the highest, and vice versa, the feeding rate is the least, when the structure is the most branched and sparse. The obtained charging protocol has been successfully tested in our experimental observations, which has visually led to the shorter accumulation of the dendrites with higher packing density. Due to analytical derivation and comparative development of the optimal pulse form with respect to the natural kinetics of dendritic evolution, we infer that it prevents the branching of the electrodeposits almost to the greatest extent, during the stochastic evolution of the dendrites.

GraphicAbstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Data availability

The row data for producing the results in this manuscript are freely available upon request from the corresponding author at aryanfar@caltech.edu.

Notes

  1. \(\updelta t=\sum_{i=1}^{n}\updelta t_{i}\) where \(\updelta t_{k}\) is the inter-collision time, typically in the range of fs.

  2. Equivalent to \(Q\approx \left\{ 43,86,174\right\}\) coulombs.

References

  1. S. Suzuki, H. Okada, K. Yabumoto, S. Matsuda, Y. Mima, N. Kimura, K. Kimura, arXiv preprint. arXiv:2010.04489 (2020)

  2. W.H. Sim, H.M. Jeong, Adv. Sci. 8(1), 2002144 (2021)

  3. X. Xu, Y. Liu, J.-Y. Hwang, O.O. Kapitanova, Z. Song, Y.-K. Sun, A. Matic, S. Xiong, Adv. Energy Mater. 10(44), 2002390 (2020)

  4. M. Selvapandiyan, G. Balaji, N. Sivakumar, M. Prasath, S. Sagadevan, Chem. Phys. Lett. 762, 138118 (2021)

  5. Y. Wang, H.-Q. Sang, W. Zhang, Y. Qi, R.-X. He, B. Chen, W. Sun, X.-Z. Zhao, D. Fu, Y. Liu, ACS Appl. Mater. Interfaces 12(46), 51563 (2020)

    CAS  Article  Google Scholar 

  6. T. Gao, C. Rainey, W. Lu, ACS Appl. Mater. Interfaces 12(46), 51448 (2020)

  7. A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, ACS Appl. Energy Mater. 3(11), 10560 (2020)

    CAS  Article  Google Scholar 

  8. J. Qian, S. Wang, Y. Li, M. Zhang, F. Wang, Y. Zhao, Q. Sun, L. Li, F. Wu, R. Chen, Adv. Funct. Mater. 31(7), 2006950 (2020)

  9. Q. Yan, G. Whang, Z. Wei, S.-T. Ko, P. Sautet, S.H. Tolbert, B.S. Dunn, J. Luo, Appl. Phys. Lett. 117(8), 080504 (2020)

  10. D. Tewari, S.P. Rangarajan, P.B. Balbuena, Y. Barsukov, P.P. Mukherjee, J. Phys. Chem. C 124(12), 6502 (2020)

  11. C.-T. Yang, Y.-X. Lin, B. Li, X. Xiao, Y. Qi, ACS Appl. Mater. Interfaces 12(45), 51007 (2020)

    CAS  Article  Google Scholar 

  12. S. Sheng, L. Sheng, L. Wang, N. Piao, X. He, J. Power Sources 476, 228749 (2020)

    CAS  Article  Google Scholar 

  13. T. Witten, L.M. Sander, Phys. Rev. B 27(9), 5686 (1983)

  14. M. Matsushita, K. Honda, H. Toyoki, Y. Hayakawa, H. Kondo, J. Phys. Soc. Jpn. 55(8), 2618 (1986)

    CAS  Article  Google Scholar 

  15. J. Kertész, T. Vicsek, J. Phys. A Math. Gen. 19(5), L257 (1986)

    Article  Google Scholar 

  16. J.N. Chazalviel, Phys. Rev. A 42(12), 7355 (1990)

    CAS  Article  Google Scholar 

  17. V. Fleury, Nature 390(6656), 145 (1997)

    CAS  Article  Google Scholar 

  18. M. Rosso, T. Gobron, C. Brissot, J.-N. Chazalviel, S. Lascaud, J. Power Sources 97, 804 (2001)

    Article  Google Scholar 

  19. C. Monroe, J. Newman, J. Electrochem. Soc. 150(10), A1377 (2003)

    CAS  Article  Google Scholar 

  20. R. Akolkar, J. Power Sources 232, 23 (2013)

    CAS  Article  Google Scholar 

  21. D. Tewari, P.P. Mukherjee, J. Mater. Chem. A 7(9), 4668 (2019)

  22. A. Aryanfar, D. Brooks, B.V. Merinov, W.A. Goddard III, A. Colussi, M.R. Hoffmann, J. Phys. Chem. Lett. 5(10), 1721 (2014)

  23. W. Mu, X. Liu, Z. Wen, L. Liu, J. Energy Storage 26, 100921 (2019)

    Article  Google Scholar 

  24. D.R. Ely, A. Jana, R.E. García, J. Power Sources 272, 581 (2014)

  25. D.A. Cogswell, Phys. Rev. E 92(1), 011301 (2015)

  26. R. Akolkar, J. Power Sources 246, 84 (2014)

    CAS  Article  Google Scholar 

  27. Z. Ahmad, Z. Hong, Venkatasubramanian Viswanathan, Proc. Natl Acad. Sci. U.S.A. 117(43), 26672–26680 (2020)

    CAS  Article  Google Scholar 

  28. W. Huang, P. Feng, C. Gao, X. Shuai, T. Xiao, C. Shuai, S. Peng, Int. J. Polym. Sci. 2015, 132965 (2015)

  29. B. Moorthy, R. Ponraj, J.H. Yun, J.E. Wang, D.J. Kim, D.K. Kim, ACS Appl. Energy Mater. 3(11), 11053 (2020)

  30. T. Gao, C. Rainey, W. Lu, ACS Appl. Mater. Interfaces 12(46), 51448(2020)

    CAS  Article  Google Scholar 

  31. R. Wang, J. Yu, J. Tang, R. Meng, L.F. Nazar, L. Huang, X. Liang, Energy Storage Mater. 32, 178 (2020)

  32. W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin, Y.H. Zhang, J.G. Zhang, Energy Environ. Sci. 7(2), 513 (2014)

    CAS  Article  Google Scholar 

  33. Z. Li, J. Huang, B.Y. Liaw, V. Metzler, J. Zhang, J. Power Sources 254, 168 (2014)

  34. Y. Ren, Y. Shen, Y. Lin, C.-W. Nan, Electrochem. Commun. 57, 27(2015)

    CAS  Article  Google Scholar 

  35. H. Lee, N. Sitapure, S. Hwang, J.S.-I. Kwon, Comput. Chem. Eng. 153, 107415 (2021)

  36. N. Schweikert, A. Hofmann, M. Schulz, M. Scheuermann, S.T. Boles, T. Hanemann, H. Hahn, S. Indris, J. Power Sources 228, 237 (2013)

    CAS  Article  Google Scholar 

  37. R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Energy Environ. Sci. 8(7), 1905 (2015)

  38. M. Zhou, R. Liu, D. Jia, Y. Cui, Q. Liu, S. Liu, D. Wu, Adv. Mater. 33(29), 2100943 (2021)

    CAS  Article  Google Scholar 

  39. C.P. Nielsen, H. Bruus, arXiv preprint. arXiv:1505.07571 (2015)

  40. P.P. Natsiavas, K. Weinberg, D. Rosato, M. Ortiz, J. Mech. Phys. Solids 95, 92 (2016)

    CAS  Article  Google Scholar 

  41. A. Aryanfar, T. Cheng, A.J. Colussi, B.V. Merinov, W.A. Goddard III, M.R. Hoffmann, J. Chem. Phys. 143(13), 134701 (2015)

  42. A. Aryanfar, D.J. Brooks, A.J. Colussi, B.V. Merinov, W.A. Goddard III, M.R. Hoffmann, Phys. Chem. Chem. Phys. 17(12), 8000 (2015)

  43. Y. Fan, Z. Wang, T. Fu, Appl. Therm. Eng. 199, 117541 (2021)

    CAS  Article  Google Scholar 

  44. A.W. Abboud, E.J. Dufek, B. Liaw, J. Electrochem. Soc. 166(4), A667 (2019)

  45. S. Chandrashekar, O. Oparaji, G. Yang, D. Hallinan, J. Electrochem. Soc. 163(14), A2988 (2016)

  46. A. Aryanfar, D.J. Brooks, W.A. Goddard, MRS Adv. 3(22), 1201 (2018)

  47. X. Zhang, Q.J. Wang, K.L. Harrison, K. Jungjohann, B.L. Boyce, S.A. Roberts, P.M. Attia, S.J. Harris, J. Electrochem. Soc. 166(15), A3639 (2019)

  48. C. Monroe, J. Newman, J. Electrochem. Soc. 151(6), A880 (2004)

    CAS  Article  Google Scholar 

  49. M. Klinsmann, F.E. Hildebrand, M. Ganser, R.M. McMeeking, J. Power Sources 442, 227226 (2019)

  50. G. Liu, D. Wang, J. Zhang, A. Kim, W. Lu, ACS Mater. Lett.1(5), 498 (2019)

    CAS  Article  Google Scholar 

  51. P. Wang, W. Qu, W.-L. Song, H. Chen, R. Chen, D. Fang, Adv. Funct. Mater. 29(27), 1900950 (2019)

  52. R. Bhattacharyya, B. Key, H. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey, Nat. Mater. 9(6), 504 (2010)

  53. S. Chandrashekar, N.M. Trease, H.J. Chang, L.-S. Du, C.P. Grey, A. Jerschow, Nat. Mater. 11(4), 311 (2012)

  54. Y. Li, Y. Qi, Energy Environ. Sci. 12, 1286 (2019)

  55. L.M. Kasmaee, A. Aryanfar, Z. Chikneyan, M.R. Hoffmann, A.J. Colussi, Chem. Phys. Lett. 661, 65 (2016)

  56. G. Yoon, S. Moon, G. Ceder, K. Kang, Chem. Mater. 30(19), 6769 (2018)

    CAS  Article  Google Scholar 

  57. M.Z. Mayers, J.W. Kaminski, T.F. Miller III, J. Phys. Chem. C 116(50), 26214 (2012)

  58. A. Aryanfar, Y. Ghamlouche, W.A. Goddard III, Electrochim. Acta 367, 137469 (2021)

  59. M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Phys. Rev. Lett. 106(4), 046102 (2011)

  60. A. Aryanfar, Y. Ghamlouche, W.A. Goddard III, J. Chem. Phys. 154(19), 194702 (2021)

  61. R. Koerver, W. Zhang, L. de Biasi, S. Schweidler, A.O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W.G. Zeier, J. Janek, Energy Environ. Sci. 11(8), 2142 (2018)

  62. K. Nishikawa, Y. Fukunaka, T. Sakka, Y.H. Ogata, J.R. Selman, J. Electrochem. Soc. 153(5), A830 (2006)

    CAS  Article  Google Scholar 

  63. J.-H. Kim, N.P.W. Pieczonka, L. Yang, ChemPhysChem 15(10), 1940 (2014)

  64. B.N. Taylor, A. Thompson, The International System of Units (SI). International Bureau of Weights and Measures Publication (US Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2001)

  65. A. Aryanfar, Y. Ghamlouche, W.A. Goddard III, Phys. Rev. E 100(4), 042801 (2019)

  66. J. Philibert, Diffus. Fundam. 4(6), 1 (2006)

    Google Scholar 

  67. R.A. Serway, J.W. Jewett, Physics for Scientists and Engineers (Cengage Learning, Boston, 2018)

  68. A. Aryanfar, US Patent 9,620,808 (April 11, 2017)

  69. N. Otsu, Automatica 11(285–296), 23 (1975)

    Google Scholar 

  70. A. Aryanfar, D.J. Brooks, A.J. Colussi, M.R. Hoffmann, Phys. Chem. Chem. Phys. 16(45), 24965 (2014)

Download references

Acknowledgments

The authors would like to thank and acknowledge the financial support from the Masri Institute (Award No. 103919) and University Research Board (Award No. 103950) at American University of Beirut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Aryanfar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests to influence the work reported in this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aryanfar, A., Ghamlouche, Y. & Goddard, W.A. Optimization of charge curve for the extreme inhibition of growing microstructures during electrodeposition. MRS Bulletin (2022). https://doi.org/10.1557/s43577-022-00307-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-022-00307-4

Keywords

  • Charging Profile
  • Optimization
  • Dendritic Growth
  • Electrodeposition
  • Analytical Development