Skip to main content
Log in

High thermal stability of doped oxide semiconductor for monolithic 3D integration

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The amorphous oxide semiconductor InGaZnO (a-IGZO) has attracted much attention due to the wide band gap, the high carrier mobility, and low-temperature process for its thin film fabrication. Although the oxide semiconductor is popularly utilized as a thin-film transistor in display technology, its characteristics are also suitable for application to back-end-of-line (BEOL) transistors in a large-scale integration (LSI) process. Recently, it was reported that fluorine doping to a-IGZO improves its thermal stability (i.e., suppresses oxygen vacancy [VO] formation) against forming gas (N2/H2) annealing required for BEOL transistors. This article elucidates an atomistic impact of the F doping to a-IGZO by means of first-principles calculations. By investigating atomistic structures of a-IGZO with and without F, we suggest that reduction of the atomic coordination number in F-doped a-IGZO is a key factor to suppress VO formation. As the impact on the electronic structure, F atoms do not alter the carrier diffusion path (i.e., conduction band minimum) in the oxide semiconductor; thus, the high carrier mobility is not deteriorated. However, heavy F doping induces in-gap trap states by forming metal–metal bonds. These impacts of anion F doping are clearly distinguished from those of cation metal doping.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S. Datta, S. Dutta, B. Grisafe, J. Smith, S. Srinivasa, H. Ye, IEEE Micro 39, 8 (2019)

    Article  Google Scholar 

  2. W. Chakraborty, H. Ye, B. Grisafe, I. Lightcap, S. Datta, IEEE Trans. Electron Devices 67, 5336 (2020)

    Article  CAS  Google Scholar 

  3. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  CAS  Google Scholar 

  4. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006)

    Article  CAS  Google Scholar 

  5. Y. Sekine, K. Furutani, Y. Shionoiri, K. Kato, J. Koyama, S. Yamazaki, ECS Trans. 37, 77 (2011)

    Article  CAS  Google Scholar 

  6. K. Kaneko, N. Inoue, S. Saito, N. Furutake, Y. Hayashi, VLSI Symp. Tech. Dig. 120 (2011)

  7. S.-J. Choi, Y. Oh, Y.-H. Song, IEICE Electron. Express 16, 20181016 (2019)

    Article  Google Scholar 

  8. F. Mo, Y. Tagawa, C. Jin, M. Ahn, T. Saraya, T. Hiramoto, M. Kobayashi, VLSI Symp. Tech. Dig. 42 (2019)

  9. K. Florent, M. Pesic, A. Subirats, K. Banerjee, S. Lavizzari, A. Arreghini, L. Di Piazza, G. Potoms, F. Sebaai, S.R.C. McMitchell, M. Popovici, G. Groeseneken, J. Van Houdt, IEDM Tech. Dig. 2.5.1 (2018)

  10. T. Aoki, Y. Okamoto, T. Nakagawa, M. Ikeda, M. Kozuma, T. Osada, Y. Kurokawa, T. Ikeda, N. Yamade, Y. Okazaki, H. Miyairi, M. Fujita, J. Koyama, S. Yamazaki, ISSCC Tech. Dig. 502 (2014)

  11. Y. Kobayashi, D. Matsubayashi, S. Nagatsuka, Y. Yakubo, T. Atsumi, Y. Shionoiri, S. Hondo, T. Yamamoto, Y. Okazaki, M. Nagai, S. Sasagawa, D. Ito, Y. Hata, T. Hamada, R. Arasawa, H. Hanaoka, M. Sakakura, H. Suzawa, Y. Yamamoo, S. Yamazaki, VLSI Symp. Tech. Dig. 170 (2014)

  12. C.-I. Lin, T.-W. Yen, H.-C. Lin, T.-Y. Huang, Y.-S. Lee, IEEE International NanoElectronics Conference (Taoyuan, Taiwan, June 21–24, 2011), p. 253

  13. N. Saito, T. Ueda, T. Tezuka, K. Ikeda, IEEE J. Electron Devices Soc. 6, 500 (2018)

    Article  CAS  Google Scholar 

  14. E. Chong, Y.S. Chun, S.Y. Lee, Appl. Phys. Lett. 97, 102102 (2010)

    Article  Google Scholar 

  15. E. Chong, S.H. Kim, S.Y. Lee, Appl. Phys. Lett. 97, 252112 (2010)

    Article  Google Scholar 

  16. N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M.-F. Lin, T. Nabatame, K. Tsukagoshi, Appl. Phys. Lett. 104, 102103 (2014)

    Article  Google Scholar 

  17. H. Fujiwara, Y. Sato, N. Saito, T. Ueda, K. Ikeda, IEEE Trans. Electron Devices 67, 5329 (2020)

    Article  CAS  Google Scholar 

  18. J. Zhang, J. Lu, Q. Jiang, B. Lu, X. Pan, L. Chen, Z. Ye, J. Vac. Sci. Technol. B 32, 010602 (2014)

    Article  Google Scholar 

  19. Z. Ye, S. Yue, J. Zhang, X. Li, L. Chen, J. Lu, IEEE Trans. Electron Devices 63, 3547 (2016)

    Article  CAS  Google Scholar 

  20. K. Woo, S.H. Lee, S. Lee, S.-Y. Bak, Y.-J. Kim, M. Yi, Microelectron. Eng. 215, 111006 (2019)

    Article  CAS  Google Scholar 

  21. N. Saito, T. Ueda, T. Tezuka, K. Ikeda, IEEE J. Electron Devices Soc. 6, 1253 (2018)

    Article  CAS  Google Scholar 

  22. J. Wu, F. Mo, T. Saraya, T. Hiramoto, M. Ochi, H. Goto, M. Kobayashi, 2021 Symposium on VLSI Technology (Kyoto, Japan, June 13–19, 2021), T6-2

  23. G.-H. Kim, W.H. Jeong, B.D. Ahn, H.S. Shin, H.J. Kim, H.J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, S.-Y. Lee, Appl. Phys. Lett. 96, 163506 (2010)

    Article  Google Scholar 

  24. C.-J. Kim, S. Kim, J.-H. Lee, J.-S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J.H. Kim, S.T. Shin, U.-I. Chung, Appl. Phys. Lett. 95, 252103 (2009)

    Article  Google Scholar 

  25. E. Chong, K.C. Jo, S.Y. Lee, Appl. Phys. Lett. 96, 152102 (2010)

    Article  Google Scholar 

  26. T.H. Jeong, S.J. Kim, D.H. Yoon, W.H. Jeong, D.L. Kim, H.S. Lim, H.J. Kim, Jpn. J. Appl. Phys. 50, 070202 (2011)

    Article  Google Scholar 

  27. J.-S. Park, K. Kim, Y.-G. Park, Y.-G. Mo, H.-D. Kim, J.-K. Jeong, Adv. Mater. 21, 329 (2009)

    Article  CAS  Google Scholar 

  28. H. Li, M. Qu, Q. Zhang, IEEE Electron Device Lett. 34, 1268 (2013)

    Article  CAS  Google Scholar 

  29. T. Kizu, S. Aikawa, N. Mitoma, M. Shimizu, X. Gao, M.-F. Lin, T. Nabatame, K. Tsukagoshi, Appl. Phys. Lett. 104, 152103 (2014)

    Article  Google Scholar 

  30. L.X. Qian, P.T. Lai, IEEE Electron Device Lett. 35, 363 (2014)

    Article  CAS  Google Scholar 

  31. H. Yamazaki, Y. Ishikawa, M. Fujii, Y. Ueoka, ECS J. Solid State Sci. Technol. 3, Q20 (2014)

    Article  CAS  Google Scholar 

  32. J. Jiang, T. Toda, M.P. Hung, D. Wang, M. Furuta, Appl. Phys. Express 7, 114103 (2014)

    Article  Google Scholar 

  33. J.K. Um, S. Lee, S. Jin, M. Mativenga, S.Y. Oh, C.H. Lee, J. Jang, IEEE Trans. Electron Devices 62, 2212 (2015)

    Article  Google Scholar 

  34. X.D. Huang, J.Q. Song, P.T. Lai, IEEE Electron Device Lett. 38, 576 (2017)

    Article  CAS  Google Scholar 

  35. J.G. Um, J. Jang, Appl. Phys. Lett. 112, 162104 (2018)

    Article  Google Scholar 

  36. L. Lu, J. Li, Z. Feng, S. Wang, H.-S. Kwok, M. Wong, IEEE Electron Device Lett. 39, 196 (2018)

    Article  CAS  Google Scholar 

  37. Z. Feng, L. Lu, S. Wang, J. Li, Z. Xia, H.-S. Kwok, M. Wong, IEEE Electron Device Lett. 39, 692 (2018)

    Article  CAS  Google Scholar 

  38. S. Wang, R. Shi, J. Li, L. Lu, Z. Xia, H.-S. Kwok, M. Wong, IEEE Electron Device Lett. 41, 729 (2020)

    Article  CAS  Google Scholar 

  39. Z. Ye, M. Wong, IEEE Electron Device Lett. 33, 549 (2012)

    Article  CAS  Google Scholar 

  40. Z. Ye, M. Wong, IEEE Electron Device Lett. 33, 1147 (2012)

    Article  CAS  Google Scholar 

  41. J.-S. Seo, J.-H. Jeon, Y.H. Hwang, H. Park, M. Ryu, S.-H. Ko Park, B.-S. Bae Sci. Rep. 3, 2085 (2013)

    Article  Google Scholar 

  42. H. Kawai, H. Fujiwara, J. Kataoka, N. Saito, T. Ueda, T. Enda, T. Ishihara, K. Ikeda, IEDM Tech. Dig. 22.2.1 (2020)

  43. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993); ibid. 49, 14251 (1994)

  44. Supplementary information is available in https://doi.org/10.1557/s43577-021-00230-0

  45. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  CAS  Google Scholar 

  46. K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, H. Hosono, Phys. Rev. B. 75, 035212 (2007)

    Article  Google Scholar 

  47. H.-K. Noh, K.J. Chang, B. Ryu, W.-J. Lee, Phys. Rev. B 84, 115205 (2011)

    Article  Google Scholar 

  48. A. de Jamblinne de Meux, G. Pourtois, J. Genoe, P. Heremans, Phys. Rev. Appl. 9, 054039 (2018)

    Article  CAS  Google Scholar 

  49. G. Lucovsky, J.C. Phillips, J. Non-Cryst. Solids 227, 1221 (1998)

    Article  Google Scholar 

  50. G. Lucovsky, Y. Wu, H. Niimi, V. Misra, J.C. Phillips, Appl. Phys. Lett. 74, 2005 (1999)

    Article  CAS  Google Scholar 

  51. M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983)

    CAS  Google Scholar 

  52. R. Kerner, J.C. Phillips, Solid State Commun. 117, 47 (2001)

    Article  Google Scholar 

  53. G. Lucovsky, J.C. Phillips, J. Phys. Condens. Matter 19, 455218 (2007)

    Article  Google Scholar 

  54. G.G. Naumis, Phys. Rev. E 71, 026114 (2005)

  55. H.-H. Nahm, Y.-S. Kim, NPG Asia Mater. 6, e143 (2014)

  56. R. Kuriki, T. Ichibha, K. Hongo, D. Lu, R. Maezono, H. Kageyama, O. Ishitani, K. Oka, K. Maeda, J. Am. Chem. Soc. 140, 6648 (2018)

    Article  CAS  Google Scholar 

  57. H. Wakayama, K. Utimula, T. Ichibha, R. Kuriki, K. Hongo, R. Maezono, K. Oka, K. Maeda, J. Phys. Chem. C 122, 26506 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contributions of Dr. S. Zheng and Dr. H. Fujiwara for their efforts on FET experiments. They are also grateful to Mr. T. Enda and Dr. M. Saitoh for helpful comments and discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Kawai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawai, H., Kataoka, J., Saito, N. et al. High thermal stability of doped oxide semiconductor for monolithic 3D integration. MRS Bulletin 46, 1044–1052 (2021). https://doi.org/10.1557/s43577-021-00230-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00230-0

Keywords

Navigation