Skip to main content
Log in

Materials for heterogeneous integration

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Emerging artificial intelligence (AI) applications require dense connectivity between integrated circuit (IC) chips to enable high-speed computations. Heterogeneous integration (HI) using advanced packaging is being viewed as a critical enabling technology for supporting AI applications. Such highly integrated systems require a multitude of materials to support electrical, mechanical, thermal, and chemical properties. In addition, these materials need to be compatible with packaging processes to ensure compatibility with low-cost manufacturing solutions. The inter-play between the various engineering domains makes the selection of materials, their processability, and compatibility extremely complex. In this article, we investigate the future in terms of the requirements posed by materials for HI and survey the past and present work in this area.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2019-edition.html

  2. S. Mukhopadhyay, Y. Long, B. Mudassar, C.S. Nair, B.H. DeProspo, H.M. Torun, M. Kathaperumal, V. Smet, D. Kim, S. Yalamanchili, M. Swaminathan, IBM J. Res. Dev. (2019). https://doi.org/10.1147/JRD.2019.2947373

    Article  Google Scholar 

  3. S. Ravichandran, M. Swaminathan, Heterogeneous integration for AI applications: Status & future needs, microwave magazine (under review)

  4. A. Grill, S.M. Gates, T.E. Ryan, S.V. Nguyen, D. Priyadarshini, Appl. Phys. Rev. 1, 011306 (2014)

    Article  Google Scholar 

  5. A. Grill, J. Vac. Sci. Technol. B 34, 020801 (2016)

    Article  Google Scholar 

  6. B.D. Hatton, K. Landskron, W.J. Hunks, M.R. Bennett, D. Shukaris, D.D. Perovic, G.A. Ozin, Mater. Today 9(3), 22 (2006)

    Article  CAS  Google Scholar 

  7. L. Wang, C. Liu, S. Shen, M. Xu, X. Liu, Adv. Ind. Eng. Polym. Res. 3, 138 (2020)

    Google Scholar 

  8. F. Liu, C. Nair, A. Kubo, T. Ando, H. Lu, R. Zhang, H. Chen, K.S. Lee, V. Sundaram, R.R. Tummala, 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (Orlando, May 30–June 2, 2017), pp. 2097–2103

  9. F. Liu, G. Khurana, R. Zhang, A. Watanabe. B. DeProspo, C. Nair, R. Tummala, M. Swaminathan, IEEE Trans. Compon. Packaging Manuf. Technol. 9, 2016 (2019)

  10. F. Liu, C. Nair, H. Ito, B.H. DeProspo, S. Ravichandran, H. Akimaru, K. Hasegawa, R. Tummala, IEEE Trans. Compon. Packaging Manuf. Technol. 9, 1426 (2019)

  11. F. Liu, C. Nair, G. Khurana, A. Watanabe, B.H. DeProspo, A. Kubo, C.P. Lin, T. Makita, N. Watanabe, R.R. Tummala, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) (Las Vegas, May 28–31, 2019), pp. 924–930

  12. S. Dwarakanath, P. Markondeya Raj, A. Agarwal D. Okamoto, A. Kubo, F. Liu, M. Kathaperumal, R.R. Tummala, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) (Las Vegas, May 28–31, 2019), pp. 718–725

  13. B. DeProspo, A. Momozawa, A. Kubo, C. Nair, V. Rajagoapal, J. Kannan, E. Surillo, F. Liu, M. Kathaperumal, R. Tummala, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) (Las Vegas, May 28–31, 2019), pp. 334–339

  14. F. Liu, R. Zhang, G. Khurana, B.H. DeProspo, R.R. Tummala, M. Swaminathan, IEEE Trans. Compon. Packaging Manuf. Technol. 10, 1411 (2020)

  15. F. Liu, R. Zhang, B.H. DeProspo, S. Dwarakanath, P. Nimbalkar, S. Ravichandran, D. Weyers, M. Kathaperumal, R.R. Tummala, M. Swaminathan, 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (Orlando, June 3–30, 2020), pp. 1132–1139

  16. R. Zhang, F. Liu, M. Kathaperumal, M. Swaminathan, R.R. Tummala, IEEE Trans. Compon. Packaging Manuf. Technol. 10, 393 (2020)

  17. P. Nimbalkar, F. Liu, A. Watanabe, D. Weyers, M. Kathaperumal, C.-P. Lin, F. Naohito, T. Makita, N. Watanabe, A. Kubo, M. Swaminathan, R. Tummala, 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (Orlando, June 3–30, 2020), pp. 62–67

  18. K. Radhakrishnan, M. Swaminathan, B. Bhattacharyya, IEEE Trans. Compon. Packaging Manuf. Technol. 11, 655 (2021)

  19. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, J. Magn. Magn. Mater. 481, 234 (2019)

  20. C.Ó. Mathúna, et al., in IEEE Transactions on Power Electronics (2012)

  21. Y.-W. Zhao, X.K. Zhang, J.Q. Xiao, Adv. Mater. 17, 915 (2005)

  22. S. Ge, D. Yao, M. Yamaguchi, X. Yang, H. Zuo, T. Ishii, D. Zhou, F. Li, J. Phys. D. Appl. Phys. 40(12), 3660 (2007)

    Article  Google Scholar 

  23. M. Yamaguchi, et al., J. Appl. Phys. (1999)

  24. M. Yamaguchi, et al., J. Magn. Magn. Mater. (2000)

  25. D.S. Gardner, G. Schrom, F. Paillet, B. Jamieson, T. Karnik, S. Borkar, IEEE Trans. Magn. 45(10), 4760 (2009)

  26. W. Günther, P. Winkler, A user guide to soft magnetic materials, PhD dissertation, Georgia Institute of Technology (2018)

  27. M.L.F. Bellaredj, A.K. Davis, P. Kohl, M. Swaminathan, IEEE J. Emerg. Selected Topics in Power Electron. (2019)

  28. C. Alvarez, S. Suresh, M. Swaminathan, R. Tummala, D. Sasaki, K. Watanabe, R. Nagatsuka, C.P. Lin, T. Wada, N. Watanabe, 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (Orlando, June 3–30, 2020), pp. 405–413

  29. Ultra-Small Case Size Passive Electronic Components, 502 Ballad Creek Court, Cary NC, 27519 USA

  30. Oak-Mitsui, Reduce EMI and Improve Power Delivery with Embedded Capacitance (2014)

  31. J. Savic, R.T. Croswell, A. Tungare, G. Dunn, T. Tang, R. Lempkowski, M. Zhang, T. Lee, CircuiTree, (June), 10–24 (2002)

  32. 3M, PCB West. 2011.

  33. P. Nanni, V. Massimo, V. Buscaglia, Synthesis of Dielectric Ceramic Material, Handbook of Low and High Dielectric Constant Materials and Their Applications (Elsevier, New York, 1999)

    Google Scholar 

  34. S.P. Consulting, TSMC Deep Trench Capacitor: Reverse Costing Analysis (2016)

  35. B. Summey, in APEC (2017)

  36. R. Spurney et al., J. Electron. Mater. (2019)

  37. K. Yoshida, H. Saita, T. Kariya, 2020 IEEE 70th Electronic Components and Technology Conference (ECTC) (Orlando, June 3–30, 2020), pp. 414–418

  38. Y. Min, R. Olmedo, M. Hill, K. Radhakrishnan, K. Aygun, M. Kabiri-Badr, R. Panat, S. Dattaguru, H. Balkan, 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC) (Las Vegas, May 28–31, 2013), pp. 1225–1229

  39. R. Phraser, C. Chiu, Materials for Advanced Packaging (Springer, Geneva, Switzerland, 2016)

    Google Scholar 

  40. K. Sebnem, O. Guralp, A. Ayse, Thermochim. Acta 499, 40 (2010)

  41. B.Z. Gao, J.Z. Xu, J.J. Peng, F.Y. Kang, H.D. Du, J. Li, S.W. Chiang, C.J. Xu, N. Hu, X.S. Ning, Experimental and theoretical studies of effective thermal conductivity of composites made of silicone rubber and Al2O3 particles. Thermochim. Acta 614, 1 (2015)

  42. Z. Wenying, Q. Shuhua, T. Chunchao, Z. Hongzhen, W. Caifeng, K. Jingli, J. Appl. Polym. Sci. (2007)

  43. D. Pal, Y.K. Joshi, in Proceedings of the Pacific Rim/ASE International Society Electronic & Photonic Packging Conference (American Society of Mechanical Engineers, New York, 1999), vol. 2, pp. 1625–1630

  44. R. Clarksean, Y. Chen, M. Marongiu, in Proceedings of the Pacific Rim/ASME International Intersociety Electronic & Photonic Packaging Conference (American Society of Mechanical Engineers, New York, 1999), vol. 2, pp. 1611–1616

  45. R. Clarksean, Y. Chen, in Proceedings of the Pacific Rim/ASME International Intersociety Electronic & Photonic Packaging Conference (American Society of Mechanical Engineers, New York, 1999), vol. 2, pp. 1631–1640

  46. L. Qizhen, M. Kyoung-Sik, J. Hongjin, W. Ching Ping, in IEEE TCPMT (2012)

  47. Z. Rongwei, M. Kyoung-sik, L. Wei, W. Ching Pong, J. Mater. Chem. (2010)

  48. K. Pashayi, H.R. Fard, F. Lai, S. Iruvanti, J. Plawsky, T. Borca-Tasciuc, J. Appl. Phys. 111, 104310 (2012)

  49. Z. Xiaoliang, Y. Yimin, G. Zhengyu, W. Fangfang, S. Rong, X. Jianbin, W. Ching-Ping, in Polymer Composites for Thermal Conductivity Improvement (2015)

  50. N. Yang, X. Zeng, J. Lu, R. Sun, C.-P. Wong, Appl. Phys. Lett. (2018)

  51. L. Ren, X. Zeng, R. Sun, J.-B. Xu, C.-P. Wong, Chem. Eng. J. (1996)

  52. T. Zhang, J. Sun, L. Ren, Y. Yao, M. Wang, X. Zeng, R. Sun, J.-B. Xu, C.-P. Wong, Compos Part A Appl. Sci. Manuf. (2019)

  53. Z. Lin, A. McNamara, Y. Liu, K-s. Moon, C.P. Wong, Compos. Sci. Technol. 90, 123 (2014)

  54. Z. Lin, Y. Liu, S. Raghavan, K-s. Moon, S.K. Sitaraman, C.P. Wong, ACS Appl. Mater. Interfaces 5(15), 7633 (2013)

  55. L. Ziyin, Y. Yagang, M. Andrew, M. Kyoung-sik, W. C. P, in IEEE (2012)

  56. Y. Yao, Z. Lin, Z. Li, X. Song, K.-S. Moon, C P. Wong, J. Mater. Chem. (2012)

  57. S. William Anderson Lee, H. Chen-Yang, C. Jian-Xun, S. Yu-Chian, C. Ying-Nan, C. Kuo-Chan, L. Tzong-Ming, C. Chih-Chia, C. Chih-Wei, Polymers (2021)

  58. F. Jiang, N. Song, R. Ouyang, P. Ding, ACS Appl. Mater. Interfaces (2021).

  59. G. Han, X. Zhao, Y. Feng, J. Ma, K. Zhou, Y. Shi, C. Liu, X. Xie, Chem. Eng. J. (2021)

  60. D. An, S. Cheng, C. Jiang, X. Duan, B. Yang, Z. Zhang, J. Li, Y. Liu, C.-P. Wong, J. Mater. Chem. C (2020)

  61. J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun, X. Zeng, R. Sun, J.-B. Xu, B. Song, C.-P. Wong, ACS Appl. Mater. Interfaces (2017)

  62. F. Wang, X. Zeng, Y. Yao, R. Sun, J. Xu, C.-P. Wong, Sci. Rep. (2016)

  63. R. Collins, J. Edmondson, Thermal Interface Materials 2020–2030, Forecasts, Technologies, Opportunities Market trends and drivers for key industries; technology trends and emerging material opportunities.

  64. L. Wei, S. Jintang, G. Wentian, W. C.P, Carbon (2012)

  65. J. Tengxiao, F. Yiyu, Q. Mengmeng, F. Wei, Compos. Part A (2016)

  66. L. Qizhen, Y. Xuxia, W. Wei, L. Yan, W. Ching Ping, ACS Nano (2011)

  67. Z. Xing, W. Sun, L. Wang, Z. Yang, S. Wang, G. Liu, J. Mater. Sci. (2019)

  68. J. P. Song, K. Y. Tian, L. X. Ma, W. Li, S. C. Yao, Int. J. Heat Mass Transfer (2019)

  69. T. Kessel, IBM Research Report, IBM

  70. L. Zhao, H. Liu, X. Chen, S. Chu, H. Liu, Z. Lin, Q. Li, G. Chu, H. Zhang, Electronic supplementary information (ESI) (2018). https://doi.org/10.1039/c8tc03417f

  71. M. T. Barako, ., S.G. Isaacson, F. Lian, .E. D. Pop, H. Reinhold K. E. Goodson, J. Tice, ACS Appl. Mater. Interfaces (2017)

  72. W. Shouling, C. Yin, W. Ranran, S. Jing, G. Lian, ACS Appl. Mater. Interfaces (2014) 6481

  73. A. P., S. S., M. D., Z. T., L. D., Microelectron. J. (2014)

  74. P. Binghua, Y. Chee Keng, SAE Int. J. Mater. Manuf. (2014)

  75. Y. Bao, Y. Bao, A. Wu, A. Wu, H. Shao, H. Shao, Y. Zhao, Y. Zhao, L. Liu, L. Liu, G. Zou, G. Zou, J. Mater. Sci. (2019)

  76. Y. Chi-Tung, Q. Wei-Chun, J. Jiao-Dong, P. Ji-An, L. Rong-Zheng, N. Gong-Dun, L. Chang-Fu, C. Key, in IEEE Thermal Interface Materials 2020–2030: Forecasts, Technologies, Opportunities Market trends and drivers for key industries (2016)

  77. S. Dwarakanath, “Ultra-Low Dielectric Constant and Ultra-Thin Polymer Dielectric Materials, Processes and Reliability for Ultra-High Bandwidth Computing Applications,” PhD thesis, Georgia Institute of Technology (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhavan Swaminathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, M., Kathaperumal, M., Moon, Ks. et al. Materials for heterogeneous integration. MRS Bulletin 46, 967–977 (2021). https://doi.org/10.1557/s43577-021-00212-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00212-2

Navigation