Skip to main content

Ferroelectric gate oxides for negative capacitance transistors

Abstract

The energy efficiency of digital computing is approaching practical and fundamental limits since the operating voltages of transistors cannot be reduced much further. Negative capacitance in ferroelectric materials could help overcome this challenge by internally amplifying the transistor gate voltage. Here, we review how negative capacitance naturally arises in ferroelectrics due to their microscopic polarization instability and argue that ultrathin ferroelectrics are the next logical step in replacing conventional SiO2/HfO2-based high-k metal gate stacks. We show how the recent discoveries of ferroelectricity and negative capacitance in HfO2 and ZrO2-based thin films of fluorite structure enable further improvements in energy efficiency and performance of advanced transistors. Finally, we outline and anticipate future directions of this new and dynamic research field.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    C.L. Magee, Complexity 18(1), 10 (2012)

    Google Scholar 

  2. 2.

    S. Salahuddin, K. Ni, S. Datta, Nat. Electron. 1(8), 442 (2018)

    Google Scholar 

  3. 3.

    P. Patel, S.L. Shinde, MRS Bull. 45(3), 176 (2020)

    Google Scholar 

  4. 4.

    M. Hoffmann, S. Slesazeck, T. Mikolajick, APL Mater. 9(2), 020902 (2021)

    CAS  Google Scholar 

  5. 5.

    R. Gu, M. Elmasry, IEEE J. Solid State Circuits 31(5), 707 (1996)

    Google Scholar 

  6. 6.

    T.N. Theis, P.M. Solomon, Science 327(5973), 1600 (2010)

    CAS  Google Scholar 

  7. 7.

    V.V. Zhirnov, R.K. Cavin, Nat. Nanotechnol. 3(2), 77 (2008)

    CAS  Google Scholar 

  8. 8.

    D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P.M. Ajayan, K. Banerjee, Nature 526(7571), 91 (2015)

    CAS  Google Scholar 

  9. 9.

    C. Qiu, F. Liu, L. Xu, B. Deng, M. Xiao, J. Si, L. Lin, Z. Zhang, J. Wang, H. Guo, H. Peng, L.M. Peng, Science 361(6400), 387 (2018)

    CAS  Google Scholar 

  10. 10.

    Y. Liu, X. Duan, H.J. Shin, S. Park, Y. Huang, X. Duan, Nature 591(7848), 43 (2021)

    CAS  Google Scholar 

  11. 11.

    S. Salahuddin, S. Datta, Nano Lett. 8(2), 405 (2008)

    CAS  Google Scholar 

  12. 12.

    T. Ando, Materials 5(12), 478 (2012)

    CAS  Google Scholar 

  13. 13.

    M. Kobayashi, K. Jang, N. Ueyama, T. Hiramoto, IEEE Trans. Nanotechnol. 16(2), 253 (2017)

    CAS  Google Scholar 

  14. 14.

    B.H. Lee, J. Oh, H.H. Tseng, R. Jammy, H. Huff, Mater. Today 9(6), 32 (2006)

    CAS  Google Scholar 

  15. 15.

    S.H. Lo, D. Buchanan, Y. Taur, W. Wang, IEEE Electron Device Lett. 18(5), 209 (1997)

    CAS  Google Scholar 

  16. 16.

    J. Robertson, J. Appl. Phys. 104(12), 124111 (2008)

    Google Scholar 

  17. 17.

    D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, H.-S.P. Wong, Proc. IEEE 89(3), 259 (2001)

    CAS  Google Scholar 

  18. 18.

    A.I. Khan, C.W. Yeung, C. Hu, S. Salahuddin, 2011 International Electron Devices Meeting (IEEE, Washington, DC, December 5–7, 2011), pp. 11.3.1–11.3.4

  19. 19.

    G. Velarde, S. Pandya, J. Karthik, D. Pesquera, L.W. Martin, APL Mater. 9(1), 010702 (2021)

    CAS  Google Scholar 

  20. 20.

    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, UK, 2001)

    Google Scholar 

  21. 21.

    R. Landauer, Collect. Phenom. 2, 167 (1976)

    Google Scholar 

  22. 22.

    T. Sluka, P. Mokry, N. Setter, Appl. Phys. Lett. 111(15), 152902 (2017)

    Google Scholar 

  23. 23.

    A.M. Bratkovsky, A.P. Levanyuk, Appl. Phys. Lett. 89(25), 253108 (2006)

    Google Scholar 

  24. 24.

    P. Zubko, J.C. Wojdeł, M. Hadjimichael, S. Fernandez-Pena, A. Sené, I. Luk’yanchuk, J.M. Triscone, J. Íñiguez, Nature 534(7608), 524 (2016)

    CAS  Google Scholar 

  25. 25.

    I. Luk’yanchuk, A. Sené, V.M. Vinokur, Phys. Rev. B 98(2), 4107 (2018)

    Google Scholar 

  26. 26.

    I. Luk’yanchuk, Y. Tikhonov, A. Sené, A. Razumnaya, V.M. Vinokur, Commun. Phys. 2(1), 22 (2019)

    Google Scholar 

  27. 27.

    J. Íñiguez, P. Zubko, I. Luk’yanchuk, A. Cano, Nat. Rev. Mater. 4(4), 243 (2019)

    Google Scholar 

  28. 28.

    H.W. Park, J. Roh, Y.B. Lee, C.S. Hwang, Adv. Mater. 31(32), 1805266 (2019)

    Google Scholar 

  29. 29.

    A.K. Yadav, K.X. Nguyen, Z. Hong, P. García-Fernández, P. Aguado-Puente, C.T. Nelson, S. Das, B. Prasad, D. Kwon, S. Cheema, A.I. Khan, C. Hu, J. Íñiguez, J. Junquera, L.Q. Chen, D.A. Muller, R. Ramesh, S. Salahuddin, Nature 565(7740), 468 (2019)

    CAS  Google Scholar 

  30. 30.

    S. Das, Z. Hong, V.A. Stoica, M.A.P. Gonçalves, Y.T. Shao, E. Parsonnet, E.J. Marksz, S. Saremi, M.R. McCarter, A. Reynoso, C.J. Long, A.M. Hagerstrom, D. Meyers, V. Ravi, B. Prasad, H. Zhou, Z. Zhang, H. Wen, F. G´omez-Ortiz, P. García-Fernández, J. Bokor, J. Íñiguez, J.W. Freeland, N.D. Orloff, J. Junquera, L.Q. Chen, S. Salahuddin, D.A. Muller, L.W. Martin, R. Ramesh, Nat. Mater. 20(2), 194 (2021)

  31. 31.

    A.K. Saha, S.K. Gupta, J. Appl. Phys. 129(8), 080901 (2021)

    CAS  Google Scholar 

  32. 32.

    P. Chandra, P.B. Littlewood, in Physics of Ferroelectrics. (Springer, Berlin, Germany, 2007), pp. 69–116

  33. 33.

    J.C. Wong, S. Salahuddin, Proc. IEEE 107(1), 49 (2019)

    CAS  Google Scholar 

  34. 34.

    M. Hoffmann, P.V. Ravindran, A.I. Khan, Materials 12(22), 3743 (2019)

    CAS  Google Scholar 

  35. 35.

    A. Cano, D. Jiménez, Appl. Phys. Lett. 97(13), 133509 (2010)

    Google Scholar 

  36. 36.

    M. Hoffmann, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, Nanoscale 10(23), 10891 (2018)

    CAS  Google Scholar 

  37. 37.

    A.I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S.R. Bakaul, R. Ramesh, S. Salahuddin, Nat. Mater. 14(2), 182 (2015)

    CAS  Google Scholar 

  38. 38.

    G. Catalan, D. Jiménez, A. Gruverman, Nat. Mater. 14(2), 137 (2015)

    CAS  Google Scholar 

  39. 39.

    M. Hoffmann, A.I. Khan, C. Serrao, Z. Lu, S. Salahuddin, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Appl. Phys. 123(18), 184101 (2018)

    Google Scholar 

  40. 40.

    S.C. Chang, U.E. Avci, D.E. Nikonov, S. Manipatruni, I.A. Young, Phys. Rev. Appl. 9(1), 014010 (2018)

    CAS  Google Scholar 

  41. 41.

    A. Islam Khan, D. Bhowmik, P. Yu, S. Joo Kim, X. Pan, R. Ramesh, S. Salahuddin, Appl. Phys. Lett. 99(11), 113501 (2011)

    Google Scholar 

  42. 42.

    D.J.R. Appleby, N.K. Ponon, K.S.K. Kwa, B. Zou, P.K. Petrov, T. Wang, N.M. Alford, A. O’Neill, Nano Lett. 14(7), 3864 (2014)

    CAS  Google Scholar 

  43. 43.

    W. Gao, A. Khan, X. Marti, C. Nelson, C. Serrao, J. Ravichandran, R. Ramesh, S. Salahuddin, Nano Lett. 14(10), 5814 (2014)

    CAS  Google Scholar 

  44. 44.

    T. Mikolajick, U. Schroeder, S. Slesazeck, IEEE Trans. Electron. Devices 67(4), 1434 (2020)

    CAS  Google Scholar 

  45. 45.

    T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Appl. Phys. Lett. 99(10), 102903 (2011)

    Google Scholar 

  46. 46.

    U. Schroeder, C.S. Hwang, H. Funakubo, Eds., Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices (Elsevier, 2019)

  47. 47.

    J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Nano Lett. 12(8), 4318 (2012)

    Google Scholar 

  48. 48.

    M.H. Park, Y.H. Lee, T. Mikolajick, U. Schroeder, C.S. Hwang, MRS Commun. 8(3), 795 (2018)

    CAS  Google Scholar 

  49. 49.

    S.S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M.R. McCarter, C.R. Serrao, A.K. Yadav, G. Karbasian, C.H. Hsu, A.J. Tan, L.C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R.V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, S. Salahuddin, Nature 580(7804), 478 (2020)

    CAS  Google Scholar 

  50. 50.

    H.J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S.C. Chae, U. Waghmare, J.H. Lee, Science 369(6509), 1343 (2020)

    CAS  Google Scholar 

  51. 51.

    T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M.H. Park, S. Fichtner, P.D. Lomenzo, M. Hoffmann, U. Schroeder, J. Appl. Phys. 129(10), 100901 (2021)

    CAS  Google Scholar 

  52. 52.

    A.I. Khan, A. Keshavarzi, S. Datta, Nat. Electron. 3(10), 588 (2020)

    Google Scholar 

  53. 53.

    T. Mikolajick, S. Slesazeck, M.H. Park, U. Schroeder, MRS Bull. 43(5), 340 (2018)

    CAS  Google Scholar 

  54. 54.

    H. Mulaosmanovic, E. Chicca, M. Bertele, T. Mikolajick, S. Slesazeck, Nanoscale 10(46), 21755 (2018)

    CAS  Google Scholar 

  55. 55.

    P. Wang, S. Yu, MRS Commun. 10(4), 538 (2020)

    CAS  Google Scholar 

  56. 56.

    R. Materlik, C. Künneth, A. Kersch, J. Appl. Phys. 117(13), 134109 (2015)

    Google Scholar 

  57. 57.

    M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, T. Mikolajick, J. Appl. Phys. 118(7), 072006 (2015)

    Google Scholar 

  58. 58.

    M.H. Park, Y.H. Lee, T. Mikolajick, U. Schroeder, C.S. Hwang, Adv. Electron. Mater. 5(3), 1800522 (2019)

    Google Scholar 

  59. 59.

    X. Xu, F.T. Huang, Y. Qi, S. Singh, K.M. Rabe, D. Obeysekera, J. Yang, M.W. Chu, S.W. Cheong, Nat. Mater. 20(6), 826 (2021)

    CAS  Google Scholar 

  60. 60.

    M. Hoffmann, M. Pešić, K. Chatterjee, A.I. Khan, S. Salahuddin, S. Slesazeck, U. Schroeder, T. Mikolajick, Adv. Funct. Mater. 26(47), 8643 (2016)

    CAS  Google Scholar 

  61. 61.

    P. Sharma, J. Zhang, K. Ni, S. Datta, IEEE Electron Devices Lett. 39(2), 272 (2018)

    CAS  Google Scholar 

  62. 62.

    M. Hoffmann, F.P.G. Fengler, M. Herzig, T. Mittmann, B. Max, U. Schroeder, R. Negrea, P. Lucian, S. Slesazeck, T. Mikolajick, Nature 565(7740), 464 (2019)

    CAS  Google Scholar 

  63. 63.

    K.D. Kim, Y.J. Kim, M.H. Park, H.W. Park, Y.J. Kwon, Y.B. Lee, H.J. Kim, T. Moon, Y.H. Lee, S.D. Hyun, B.S. Kim, C.S. Hwang, Adv. Funct. Mater. 29(17), 1808228 (2019)

    Google Scholar 

  64. 64.

    I. Stolichnov, M. Cavalieri, C. Gastaldi, M. Hoffmann, U. Schroeder, T. Mikolajick, A.M. Ionescu, Appl. Phys. Lett. 117(17), 172902 (2020)

    CAS  Google Scholar 

  65. 65.

    C. Gastaldi, M. Cavalieri, A. Saeidi, E. O’Connor, S. Kamaei, T. Rosca, I. Stolichnov, A.M. Ionescu, Appl. Phys. Lett. 118(19), 192904 (2021)

    CAS  Google Scholar 

  66. 66.

    M.H. Lee, S.T. Fan, C.H. Tang, P.G. Chen, Y.C. Chou, H.H. Chen, J.Y. Kuo, M.J. Xie, S.N. Liu, M.H. Liao, C.A. Jong, K.S. Li, M.C. Chen, C.W. Liu, 2016 IEEE International Electron Devices Meeting (IEDM) (San Francisco, December 3–7, 2016), pp. 12.1.1–12.1.4

  67. 67.

    M. Kobayashi, T. Hiramoto, AIP Adv. 6(2), 025113 (2016)

    Google Scholar 

  68. 68.

    M. Si, C.J. Su, C. Jiang, N.J. Conrad, H. Zhou, K.D. Maize, G. Qiu, C.T. Wu, A. Shakouri, M.A. Alam, P.D. Ye, Nat. Nanotechnol. 13(1), 24 (2018)

    CAS  Google Scholar 

  69. 69.

    M. Kobayashi, Appl. Phys. Exp. 11(11), 110101 (2018)

    Google Scholar 

  70. 70.

    M.A. Alam, M. Si, P.D. Ye, Appl. Phys. Lett. 114(9), 090401 (2019)

    Google Scholar 

  71. 71.

    M. Hoffmann, S. Slesazeck, U. Schroeder, T. Mikolajick, Nat. Electron. 3(9), 504 (2020)

    Google Scholar 

  72. 72.

    D. Kwon, S. Cheema, Y.K. Lin, Y.H. Liao, K. Chatterjee, A.J. Tan, C. Hu, S. Salahuddin, IEEE Electron. Device Lett. 41(1), 179 (2020)

    Google Scholar 

  73. 73.

    W. Cao, K. Banerjee, Nat. Commun. 11(1), 196 (2020)

    CAS  Google Scholar 

  74. 74.

    Y.H. Liao, D. Kwon, S. Cheema, N. Shanker, A.J. Tan, M.Y. Kao, L.C. Wang, C. Hu, S. Salahuddin, IEEE Trans. Electron. Devices 68(3), 1346 (2021)

    CAS  Google Scholar 

  75. 75.

    D. Kwon, S. Cheema, N. Shanker, K. Chatterjee, Y.H. Liao, A.J. Tan, C. Hu, S. Salahuddin, IEEE Electron. Device Lett. 40(6), 993 (2019)

    CAS  Google Scholar 

  76. 76.

    S. Lombardo, C. Nelson, K. Chae, S. Reyes-Lillo, M. Tian, N. Tasneem, Z. Wang, M. Hoffmann, D. Triyoso, S. Consiglio, K. Tapily, R. Clark, G. Leusink, K. Cho, A. Kummel, J. Kacher, A. Khan, 2020 IEEE Symposium on VLSI Technology (Honolulu, June 16–19, 2020), pp. 1–2

  77. 77.

    P. Nukala, M. Ahmadi, Y. Wei, S. de Graaf, E. Stylianidis, T. Chakrabortty, S. Matzen, H.W. Zandbergen, A. Björling, D. Mannix, D. Carbone, B. Kooi, B. Noheda, Science 372(6542), 630 (2021)

    CAS  Google Scholar 

  78. 78.

    N. Zagni, P. Pavan, M.A. Alam, Appl. Phys. Lett. 114(23), 233102 (2019)

    Google Scholar 

  79. 79.

    L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu, F. Wang, Z. Wang, H. Shen, T. Lin, P. Zhou, X. Meng, W. Hu, Q. Liu, J. Wang, M. Liu, J. Chu, Nat. Commun. 11(1), 101 (2020)

    CAS  Google Scholar 

  80. 80.

    F. Bellando, C.K. Dabhi, A. Saeidi, C. Gastaldi, Y.S. Chauhan, A.M. Ionescu, Appl. Phys. Lett. 116(17), 173503 (2020)

    Google Scholar 

  81. 81.

    M. Hoffmann, F.P.G. Fengler, B. Max, U. Schroeder, S. Slesazeck, T. Mikolajick, Adv. Energy Mater. 9(40), 1901154 (2019)

    CAS  Google Scholar 

  82. 82.

    M.H. Braga, J.E. Oliveira, T. Kai, A.J. Murchison, A.J. Bard, J.B. Goodenough, J. Am. Chem. Soc. 140(51), 17968 (2018)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Michael Hoffmann or Sayeef Salahuddin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, M., Salahuddin, S. Ferroelectric gate oxides for negative capacitance transistors. MRS Bulletin (2021). https://doi.org/10.1557/s43577-021-00208-y

Download citation

Keywords

  • Nanoelectronics
  • Ferroelectricity
  • Thin film
  • Electrical properties