Skip to main content
Log in

Relation between material structure and photoluminescence properties in yttrium–aluminum borates phosphors

  • Impact
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Glassy yttrium and aluminum borate powders (g-YAB) were synthesized by the polymeric precursor method (modified Pechini). We report here a detailed study of the structural, spectroscopic, and optical characterizations of the g-YAB powders, involving several complementary techniques: thermal analysis, X-ray powder diffraction, and electron microscopy combined with IR, nuclear magnetic resonance, and electron paramagnetic resonance spectroscopies. All these results, directly correlated with the photoluminescence (PL) properties of the g-YAB phosphors, allow us to argue that the PL emissions come from large polyaromatic molecules auto-generated from organic precursors and trapped in the glassy network of the g-YAB during thermal treatments. These extended aromatic molecules (seven rings and more corresponding to polycyclic aromatic hydrocarbons) must have been produced during the pyrolysis treatment of the powders, in which a large fraction of the protons was replaced during the calcination process by hydroxyl groups, or other oxygen-containing groups.

Impact statement

Substituting critical materials and the reduction of energy consumption of key functional devices, such as LED lighting, are major concerns in materials chemistry research. In this context, the search for new LED phosphors, without rare earths, has given rise to extensive publications. In particular, defects-related luminescent materials and carboneous luminescent species are very promising, as they exhibit broad emissions in the visible range. Moreover, they are synthesized by soft chemical routes at moderate temperatures. However, the mechanisms involved in their photoluminescence (PL) are poorly understood. We report here on the synthesis and properties of yttrium aluminum borate powders–a new broad-emission phosphor–using the low-cost and versatile polymeric precursor method. We combined structural, chemical, and spectroscopic analyses to link the inorganic matrix structure with the intense PL. The inorganic aluminum borate matrix is amorphous, and its structure evolution is not correlated to that of photoluminescence. Moreover, by coupling spectroscopic results (e.g., PL, EPR) and DFT calculations, we specified the molecular nature of the emitting centers that are polycyclic aromatic hydrocarbons, such as coronene or circumcoronene molecules. Thus, these highly original results are an important step in the understanding and identification of the emitting centers in this new family of promising phosphors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. S.T. Tan, X.W. Sun, H.V. Demir, S.P. Denbaars, IEEE Photon. J. 4, 613 (2012). https://doi.org/10.1109/JPHOT.2012.2191276

    Article  Google Scholar 

  2. E.F. Schubert, J.K. Kim, Science 308, 1274 (2005). https://doi.org/10.1126/science.1108712

    Article  CAS  Google Scholar 

  3. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R Rep. 71, 1 (2010). https://doi.org/10.1016/j.mser.2010.07.001

    Article  CAS  Google Scholar 

  4. D.P. Dutta, A.K. Tyagi, Solid State Phenom. 155, 113 (2009)

    Article  CAS  Google Scholar 

  5. P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.K. Henß, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891 (2014). https://doi.org/10.1038/nmat4012

    Article  CAS  Google Scholar 

  6. A.D. Sontakke, J. Ueda, J. Xu, K. Asami, M. Katayama, Y. Inada, S. Tanabe, J. Phys. Chem. C 120, 17683 (2016). https://doi.org/10.1021/acs.jpcc.6b04159

    Article  CAS  Google Scholar 

  7. A.A. Setlur, E.V. Radkov, C.S. Henderson, J.-H. Her, A.M. Srivastava, N. Karkada, M.S. Kishore, N.P. Kumar, D. Aesram, A. Deshpande, B. Kolodin, L.S. Grigorov, U. Happek, Chem. Mater. 22, 4076 (2010). https://doi.org/10.1021/cm100960g

    Article  CAS  Google Scholar 

  8. R.G. Stevens, D.E. Blask, G.C. Brainard, J. Hansen, S.W. Lockley, I. Provencio, M.S. Rea, L. Reinlib, Environ. Health Perspect. 115, 1357 (2007). https://doi.org/10.1289/ehp.10200

    Article  Google Scholar 

  9. S.L. Chellappa, R. Steiner, P. Blattner, P. Oelhafen, T. Götz, C. Cajochen, PLoS ONE 6, e16429 (2011). https://doi.org/10.1371/journal.pone.0016429

    Article  CAS  Google Scholar 

  10. US Department of Energy, https://www.energy.gov/eere/ssl/downloads/solid-state-lighting-2016-rd-plan

  11. C. Zhang, J. Lin, Chem. Soc. Rev. 41, 7938 (2012). https://doi.org/10.1039/c2cs35215j

    Article  CAS  Google Scholar 

  12. W.H. Green, K.P. Le, J. Grey, T.T. Au, M.J. Sailor, Science 276, 1826 (1997). https://doi.org/10.1126/science.276.5320.1826

    Article  CAS  Google Scholar 

  13. V. Bekiari, P. Lianos, Chem. Mater. 10, 3777 (1998). https://doi.org/10.1021/cm980739w

    Article  CAS  Google Scholar 

  14. Y. Ishii, A. Matsumura, Y. Ishikawa, S. Kawasaki, Jpn. J. Appl. Phys. (2011). https://doi.org/10.1143/JJAP.50.01AF06

    Article  Google Scholar 

  15. A. Matsumura, Y. Ishii, K. Sato, Y. Ishikawa, S. Kawasaki, IOP Conf. Ser. Mater. Sci. Eng. 18, 102019 (2011). https://doi.org/10.1088/1757-899X/18/10/102019

    Article  CAS  Google Scholar 

  16. L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, A. Michalowicz, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, J. Alloys Compd. 471, 253 (2009). https://doi.org/10.1016/j.jallcom.2008.03.080

    Article  CAS  Google Scholar 

  17. J.Y. Park, J.H. Lee, G.S.R. Raju, B.K. Moon, J.H. Jeong, B.C. Choi, J.H. Kim, Ceram. Int. 40, 5693 (2014). https://doi.org/10.1016/j.ceramint.2013.11.007

    Article  CAS  Google Scholar 

  18. Y. Kaihatsu, W.N. Wang, F. Iskandar, K. Okuyama, Mater. Lett. 64, 836 (2010). https://doi.org/10.1016/j.matlet.2010.01.033

    Article  CAS  Google Scholar 

  19. C. Lin, M. Yu, Z. Cheng, C. Zhang, Q. Meng, J. Lin, Inorg. Chem. 47, 49 (2008). https://doi.org/10.1021/ic700652v

    Article  CAS  Google Scholar 

  20. T. Hayakawa, A. Hiramitsu, M. Nogami, Appl. Phys. Lett. 82, 2975 (2003). https://doi.org/10.1063/1.1569038

    Article  CAS  Google Scholar 

  21. M. Anicete-Santos, F.C. Picon, M.T. Escote, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, Appl. Phys. Lett. 88, 211913 (2006). https://doi.org/10.1063/1.2207491

    Article  Google Scholar 

  22. E. Orhan, M. Anicete-Santos, M.A.M. Maurera, F.M. Pontes, A.G. Souza, J. Andrès, A. Beltràn, J.A. Varela, P.S. Pizani, C.A. Taft, E. Longo, J. Solid State Chem. 178, 1284 (2005). https://doi.org/10.1016/j.jssc.2004.12.038

    Article  CAS  Google Scholar 

  23. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, J. Phys. Chem. B 108, 8119 (2004). https://doi.org/10.1021/jp036741e

    Article  CAS  Google Scholar 

  24. Y. Hu, H.J. Chen, Mater. Res. Bull. 43, 2153 (2008). https://doi.org/10.1016/j.materresbull.2007.09.002

    Article  CAS  Google Scholar 

  25. W.N. Wang, T. Ogi, Y. Kaihatsu, F. Iskandar, K. Okuyama, J. Mater. Chem. 21, 5183 (2011). https://doi.org/10.1039/c0jm02215b

    Article  CAS  Google Scholar 

  26. X. Zhang, Z. Lu, H. Liu, J. Lin, X. Xu, F. Meng, J. Zhao, C. Tang, J. Mater. Chem. C 3, 3311 (2015). https://doi.org/10.1039/c5tc00179j

    Article  CAS  Google Scholar 

  27. T. Ogi, Y. Kaihatsu, F. Iskandar, W.N. Wang, K. Okuyama, Adv. Mater. 20, 3235 (2008). https://doi.org/10.1002/adma.200702551

    Article  CAS  Google Scholar 

  28. I. Villa, A. Vedda, M. Fasoli, R. Lorenzi, N. Kränzlin, F. Rechberger, G. Ilari, D. Primc, B. Hattendorf, F.J. Heiligtag, M. Niederberger, A. Lauria, Chem. Mater. 28, 3245 (2016). https://doi.org/10.1021/acs.chemmater.5b03811

    Article  CAS  Google Scholar 

  29. V.F. Guimarães, L.J.Q. Maia, I. Gautier-Luneau, C. Bouchard, A.C. Hernandes, F. Thomas, A. Ferrier, B. Viana, A. Ibanez, J. Mater. Chem. C 3, 5795 (2015). https://doi.org/10.1039/C5TC00237K

    Article  CAS  Google Scholar 

  30. A. Ibanez, G.V. Ferraz, L.J.Q. Maia, A.C. Hernandes, Luminophore composition for UV-visible light conversion and light converter obtained therefrom, WO/2012/085290 (2012). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012085290

  31. V.F. Guimarães, M. Salaün, P. Burner, L.J.Q.Q. Maia, A. Ferrier, B. Viana, I. Gautier-Luneau, A. Ibanez, Solid State Sci. 65, 6 (2017). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2016.12.011

    Article  Google Scholar 

  32. H. Deters, A.S.S. de Camargo, C.N. Santos, C.R. Ferrari, A.C. Hernandes, A. Ibanez, M.T. Rinke, H. Eckert, J. Phys. Chem. C 113, 16216 (2009). https://doi.org/10.1021/jp9032904

    Article  CAS  Google Scholar 

  33. S. Sen, Z. Xu, J.F. Stebbins, J. Non-Cryst. Solids 226, 29 (1998). https://doi.org/10.1016/S0022-3093(97)00491-2

    Article  CAS  Google Scholar 

  34. L. Kerns, M.C. Weinberg, S. Myers, R. Assink, J. Non-Cryst. Solids 232–234, 86 (1998). https://doi.org/10.1016/S0022-3093(98)00376-7

    Article  Google Scholar 

  35. G. Dong, X. Liu, X. Xiao, Q. Zhang, G. Lin, Z. Ma, D. Chen, J. Qiu, Electrochem. Solid-State Lett. 12, K53 (2009). https://doi.org/10.1149/1.3137021

    Article  CAS  Google Scholar 

  36. V.F. Guimarães, A.D. Sontakke, L.J.Q.Q. Maia, M. Salaün, I. Gautier-Luneau, A. Ferrier, B. Viana, A. Ibanez, J. Lumin. 188, 448 (2017). https://doi.org/10.1016/j.jlumin.2017.05.013

    Article  CAS  Google Scholar 

  37. P. Burner, A.D. Sontakke, M. Salaün, M. Bardet, J.-M. Mouesca, S. Gambarelli, A.-L. Barra, A. Ferrier, B. Viana, A. Ibanez, V. Maurel, I. Gautier-Luneau, Angew. Chem. Int. Ed. 129, 14183 (2017). https://doi.org/10.1002/anie.201706070

    Article  CAS  Google Scholar 

  38. P.P. Neves, L.J.Q. Maia, M.I.B. Bernardi, A.R. Zanatta, V.R. Mastelaro, S.M. Zanetti, E.R. Leite, J. Solgel Sci. Technol. 29, 89 (2004). https://doi.org/10.1023/B:JSST.0000023010.79540.6f

    Article  CAS  Google Scholar 

  39. J.F. Carvalho, F.S. De Vicente, S. Pairis, P. Odier, A.C. Hernandes, A. Ibanez, J. Eur. Ceram. Soc. 29, 2511 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.03.005

    Article  CAS  Google Scholar 

  40. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40, 70 (2002). https://doi.org/10.1002/mrc.984

    Article  CAS  Google Scholar 

  41. G. te Velde, E.J. Baerends, J. Comput. Phys. 99, 84 (1992). https://doi.org/10.1016/0021-9991(92)90277-6

    Article  Google Scholar 

  42. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980). https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  43. A.D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  44. J.P. Perdew, Phys. Rev. B 33, 8822 (1986). https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  45. E. van Lenthe, A. Ehlers, E.-J. Baerends, J. Chem. Phys. 110, 8943 (1999). https://doi.org/10.1063/1.478813

    Article  Google Scholar 

  46. D. Mazza, M. Vallino, G. Busca, J. Am. Ceram. Soc. 75, 1929 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07219.x

    Article  CAS  Google Scholar 

  47. H. You, G. Hong, J. Phys. Chem. Solids 60, 325 (1999). https://doi.org/10.1016/S0022-3697(98)00290-X

    Article  CAS  Google Scholar 

  48. M. Okuno, N. Zotov, M. Schmücker, H. Schneider, J. Non-Cryst. Solids 351, 1032 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.01.014

    Article  CAS  Google Scholar 

  49. P. Tarte, Spectrochim. Acta Part A Mol. Spectrosc. 23, 2127 (1967). https://doi.org/10.1016/0584-8539(67)80100-4

    Article  CAS  Google Scholar 

  50. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, J. Phys. Chem. 91, 1073 (1987). https://doi.org/10.1021/j100289a014

    Article  CAS  Google Scholar 

  51. C.N. Santos, D. De Sousa-Meneses, P. Echegut, D.R. Neuville, A.C. Hernandes, A. Ibanez, Appl. Phys. Lett. 94, 151901 (2009). https://doi.org/10.1063/1.3115796

    Article  CAS  Google Scholar 

  52. S. Rada, M. Culea, M. Rada, P. Pascuta, V. Maties, E. Culea, J. Mol. Struct. 937, 70 (2009). https://doi.org/10.1016/j.molstruc.2009.08.016

    Article  CAS  Google Scholar 

  53. L.J.Q.Q. Maia, C.R. Ferrari, V.R. Mastelaro, A.C. Hernandes, A. Ibanez, Solid State Sci. 10, 1835 (2008). https://doi.org/10.1016/j.solidstatesciences.2008.03.031

    Article  CAS  Google Scholar 

  54. R.X. Fischer, V. Kahlenberg, D. Voll, K.J.D. MacKenzie, M.E. Smith, B. Schnetger, H.J. Brumsack, H. Schneider, Am. Mineral. 93, 918 (2008). https://doi.org/10.2138/am.2008.2744

    Article  CAS  Google Scholar 

  55. E. Mendelovici, R. Villalba, A. Sagarzazu, O. Carias, Clay Miner. 30, 307 (1995). https://doi.org/10.1180/claymin.1995.030.4.04

    Article  CAS  Google Scholar 

  56. A.D. Sontakke, M. Salaün, V.F. Guimarães, A. Ferrier, L. Maia, I. Gautier-Luneau, B. Viana, A. Ibanez, Proc. SPIE 10124, 1012409 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the French National EPR facilities network (IR RENARD CNRS 3443) for support of EPR experiments in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salaün.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salaün, M., Sontakke, A.D., Maurel, V. et al. Relation between material structure and photoluminescence properties in yttrium–aluminum borates phosphors. MRS Bulletin 47, 231–242 (2022). https://doi.org/10.1557/s43577-021-00195-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00195-0

Navigation