Skip to main content

Brittle-to-ductile transitions in glasses: Roles of soft defects and loading geometry

Abstract

Understanding the fracture toughness of glasses is of prime importance for science and technology. We study it here using extensive atomistic simulations in which the interaction potential, glass transition cooling rate, and loading geometry are systematically varied, mimicking a broad range of experimentally accessible properties. Glasses’ non-equilibrium mechanical disorder is quantified through \(A_{\rm g},\) the dimensionless prefactor of the universal spectrum of non-phononic excitations, which measures the abundance of soft glassy defects that affect plastic deformability. We show that while a brittle-to-ductile transition might be induced by reducing the cooling rate, leading to a reduction in \(A_{\rm g}\), iso-\(A_{\rm g}\) glasses are either brittle or ductile depending on the degree of Poisson contraction under unconstrained uniaxial tension. Eliminating Poisson contraction using constrained tension reveals that iso-\(A_{\rm g}\) glasses feature similar toughness, and that varying \(A_{\rm g}\) under these conditions results in significant toughness variation. Our results highlight the roles played by both soft defects and loading geometry (which affects the activation of defects) in the toughness of glasses.

Impact statement

Glasses are non-crystalline materials that find an enormous range of industrial and technological applications. They are typically formed by rapidly cooling liquids, resulting in arrested out-of-equilibrium states lacking the long-range order of their crystalline counterparts. The emerging disordered structures, which vary with the formation cooling rate, give rise to large variability in material properties. Among these, the fracture toughness—quantifying materials’ ability to resist catastrophic failure in the presence of a crack—is of prime importance; understanding its physical origin and range of variability is a major challenge with far-reaching implications. To address this challenge, we employ cutting-edge and extensive computer simulations of glasses, spanning a range of material properties that is comparable to that of real-life glasses. We focus on the failure resistance and show that it is controlled by both the abundance of soft defects inside the glass, which are responsible for glasses’ plastic deformability, and by the loading configuration of the fracture test employed, which affects the imposed deformation geometry. These two physical factors control together a transition from ductile-like (gradual, accompanied by extensive plastic deformation) failure to brittle-like (abrupt, accompanied by little and localized plastic deformation) failure.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. J.S. Harmon, M.D. Demetriou, W.L. Johnson, M. Tao, Appl. Phys. Lett. 90, 131912 (2007)

    Article  CAS  Google Scholar 

  2. B. Lawn, Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  3. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998)

    Article  CAS  Google Scholar 

  4. J.J. Lewandowski, W.H. Wang, A.L. Greer, Philos. Mag. Lett. 85, 77 (2005)

    Article  CAS  Google Scholar 

  5. S. Madge, D. Louzguine-Luzgin, J. Lewandowski, A. Greer, Acta Mater. 60, 4800 (2012)

    Article  CAS  Google Scholar 

  6. Y. Shi, J. Luo, F. Yuan, L. Huang, J. Appl. Phys. 115, 043528 (2014)

    Article  CAS  Google Scholar 

  7. C.H. Rycroft, E. Bouchbinder, Phys. Rev. Lett. 109, 194301 (2012)

    Article  CAS  Google Scholar 

  8. M. Vasoya, C.H. Rycroft, E. Bouchbinder, Phys. Rev. Appl. 6, 024008 (2016)

    Article  Google Scholar 

  9. J. Ketkaew, W. Chen, H. Wang, A. Datye, M. Fan, G. Pereira, U.D. Schwarz, Z. Liu, R. Yamada, W. Dmowski, M.D. Shattuck, C.S. O’Hern, T. Egami, E. Bouchbinder, J. Schroers, Nat. Commun. 9, 3271 (2018)

    Article  CAS  Google Scholar 

  10. J. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity, vol. 14 (Oxford University Press, Oxford, 2006)

  11. D. Coslovich and G. Pastore, J. Chem. Phys. 127, 124504 (2007)

  12. H. Tong, H. Tanaka, Phys. Rev. Lett. 124, 225501 (2020)

    Article  CAS  Google Scholar 

  13. C.P. Royall, S.R. Williams, Phys. Rep. 560, 1 (2015)

    Article  CAS  Google Scholar 

  14. L. Wang, A. Ninarello, P. Guan, L. Berthier, G. Szamel, E. Flenner, Nat. Commun. 10, 26 (2019)

    Article  CAS  Google Scholar 

  15. C. Rainone, E. Bouchbinder, E. Lerner, Proc. Natl Acad. Sci. U.S.A. 117, 5228 (2020)

    Article  CAS  Google Scholar 

  16. B.B. Laird, H.R. Schober, Phys. Rev. Lett. 66, 636 (1991)

    Article  CAS  Google Scholar 

  17. H.R. Schober, C. Oligschleger, Phys. Rev. B 53, 11469 (1996)

    Article  CAS  Google Scholar 

  18. J. Ding, S. Patinet, M.L. Falk, Y. Cheng, E. Ma, Proc. Natl Acad. Sci. U.S.A. 111, 14052 (2014)

    Article  CAS  Google Scholar 

  19. E. Lerner, G. Düring, E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)

    Article  CAS  Google Scholar 

  20. H. Mizuno, H. Shiba, A. Ikeda, Proc. Natl Acad. Sci. U.S.A. 114, E9767 (2017)

    Article  CAS  Google Scholar 

  21. D. Richard, G. Kapteijns, J.A. Giannini, M.L. Manning, E. Lerner, Phys. Rev. Lett. 126, 015501 (2021)

    Article  CAS  Google Scholar 

  22. A. Moriel, Y. Lubomirsky, E. Lerner, E. Bouchbinder, Phys. Rev. E 102, 033008 (2020)

    Article  CAS  Google Scholar 

  23. V.L. Gurevich, D.A. Parshin, H.R. Schober, Phys. Rev. B 67, 094203 (2003)

    Article  CAS  Google Scholar 

  24. D.A. Parshin, H.R. Schober, V.L. Gurevich, Phys. Rev. B 76, 064206 (2007)

    Article  CAS  Google Scholar 

  25. G. Kapteijns, E. Bouchbinder, E. Lerner, Phys. Rev. Lett. 121, 055501 (2018)

    Article  CAS  Google Scholar 

  26. D. Richard, K. González-López, G. Kapteijns, R. Pater, T. Vaknin, E. Bouchbinder, E. Lerner, Phys. Rev. Lett. 125, 085502 (2020)

    Article  CAS  Google Scholar 

  27. C. Rainone, P. Urbani, F. Zamponi, E. Lerner, E. Bouchbinder, SciPost Phys. Core 4, 008 (2021)

    Article  Google Scholar 

  28. E. Bouchbinder, E. Lerner, C. Rainone, P. Urbani, F. Zamponi, Phys. Rev. B 103, 174202 (2021)

    Article  CAS  Google Scholar 

  29. K. González-López, M. Shivam, Y. Zheng, M.P. Ciamarra, E. Lerner, Phys. Rev. E 103, 022605 (2021)

  30. W. Ji, T.W.J. de Geus, M. Popović, E. Agoritsas, M. Wyart, Phys. Rev. E 102, 062110 (2020)

    Article  CAS  Google Scholar 

  31. C. Maloney, A. Lemaître, Phys. Rev. Lett. 93, 195501 (2004)

    Article  CAS  Google Scholar 

  32. A. Tanguy, B. Mantisi, M. Tsamados, EPL 90, 16004 (2010)

    Article  CAS  Google Scholar 

  33. M.L. Manning, A.J. Liu, Phys. Rev. Lett. 107, 108302 (2011)

    Article  CAS  Google Scholar 

  34. J. Rottler, S.S. Schoenholz, A.J. Liu, Phys. Rev. E 89, 042304 (2014)

    Article  CAS  Google Scholar 

  35. L. Gartner, E. Lerner, Phys. Rev. E 93, 011001 (2016)

    Article  CAS  Google Scholar 

  36. D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S.A. Ridout, B. Xu, G. Zhang, P.K. Morse, J.-L. Barrat, L. Berthier, M.L. Falk, P. Guan, A.J. Liu, K. Martens, S. Sastry, D. Vandembroucq, E. Lerner, M.L. Manning, Phys. Rev. Mater. 4, 113609 (2020)

    Article  CAS  Google Scholar 

  37. M. Tsamados, A. Tanguy, C. Goldenberg, J.-L. Barrat, Phys. Rev. E 80, 026112 (2009)

    Article  CAS  Google Scholar 

  38. H. Mizuno, S. Mossa, J.-L. Barrat, Phys. Rev. E 87, 042306 (2013)

    Article  CAS  Google Scholar 

  39. G. Kapteijns, D. Richard, E. Bouchbinder, E. Lerner, J. Chem. Phys. 154, 081101 (2021)

    Article  CAS  Google Scholar 

  40. G. Kapteijns, W. Ji, C. Brito, M. Wyart, E. Lerner, Phys. Rev. E 99, 012106 (2019)

    Article  CAS  Google Scholar 

  41. W. Schirmacher, Europhys. Lett. 73, 892 (2006)

    Article  CAS  Google Scholar 

  42. W. Schirmacher, G. Ruocco, T. Scopigno, Phys. Rev. Lett. 98, 025501 (2007)

    Article  CAS  Google Scholar 

  43. J. Schroers, W.L. Johnson, Phys. Rev. Lett. 93, 255506 (2004)

    Article  CAS  Google Scholar 

  44. A. Castellero, S.D. Uhlenhaut, B. Moser, J.F. Löer, Philos. Mag. Lett. 87, 383 (2007)

  45. G.N. Greaves, A. Greer, R.S. Lakes, T. Rouxel, Nat. Mater. 10, 823 (2011)

    Article  CAS  Google Scholar 

  46. B. Deng, Y. Shi, J. Appl. Phys. 124, 035101 (2018)

    Article  CAS  Google Scholar 

  47. G. Kumar, P. Neibecker, Y.H. Liu, J. Schroers, Nat. Commun. 4, 1 (2013)

    Google Scholar 

  48. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science 315, 1385 (2007)

    Article  CAS  Google Scholar 

  49. O. Dauchot, S. Karmakar, I. Procaccia, J. Zylberg, Phys. Rev. E 84, 046105 (2011)

    Article  CAS  Google Scholar 

  50. K. González-López, M. Shivam, Y. Zheng, M.P. Ciamarra, E. Lerner, Phys. Rev. E 103, 022606 (2021)

  51. K. González-López, E. Bouchbinder, E. Lerner, arXiv preprint (2020). arXiv:2012.03634

  52. M. Falk, Phys. Rev. B 60, 7062 (1999)

    Article  CAS  Google Scholar 

  53. D. Wang, D. Zhao, D. Ding, H. Bai, W. Wang, J. Appl. Phys. 115, 123507 (2014)

    Article  CAS  Google Scholar 

  54. F. Yuan, L. Huang, J. Non-Cryst. Solids 358, 3481 (2012)

    Article  CAS  Google Scholar 

  55. W. Li, Y. Gao, H. Bei, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  56. E.Y. Lin, R.A. Riggleman, Soft Matter 15, 6589 (2019)

    Article  CAS  Google Scholar 

  57. J. Ashwin, E. Bouchbinder, I. Procaccia, Phys. Rev. E 87, 042310 (2013)

    Google Scholar 

  58. E. Lerner, E. Bouchbinder, J. Chem. Phys. 148, 214502 (2018)

    Article  CAS  Google Scholar 

  59. M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  60. D.L. Malandro, D.J. Lacks, J. Chem. Phys. 110, 4593 (1999)

    Article  CAS  Google Scholar 

  61. L. Huo, J. Zeng, W. Wang, C.T. Liu, Y. Yang, Acta Mater. 61, 4329 (2013)

    Article  CAS  Google Scholar 

  62. F. Zhu, A. Hirata, P. Liu, S. Song, Y. Tian, J. Han, T. Fujita, M. Chen, Phys. Rev. Lett. 119, 215501 (2017)

    Article  Google Scholar 

  63. Z. Schwartzman-Nowik, E. Lerner, E. Bouchbinder, Phys. Rev. E 99, 060601 (2019)

    Article  CAS  Google Scholar 

  64. A. Barbot, M. Lerbinger, A. Lemaitre, D. Vandembroucq, S. Patinet, Phys. Rev. E 101, 033001 (2020)

    Article  CAS  Google Scholar 

  65. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006)

    Article  CAS  Google Scholar 

  66. J.F. Lutsko, J. Appl. Phys. 65, 2991 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

D.R. acknowledges support of the Simons Foundation for the “Cracking the Glass Problem Collaboration” Award No. 348126. E.L. acknowledges support from the NWO (Vidi Grant No. 680-47-554/3259). E.B. acknowledges support from the Ben May Center for Chemical Theory and Computation and the Harold Perlman Family.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edan Lerner or Eran Bouchbinder.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5991 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, D., Lerner, E. & Bouchbinder, E. Brittle-to-ductile transitions in glasses: Roles of soft defects and loading geometry. MRS Bulletin 46, 902–914 (2021). https://doi.org/10.1557/s43577-021-00171-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00171-8

Keywords