Skip to main content

Engineered neuromuscular actuators for medicine, meat, and machines

Abstract

Movement is central to life. Neuromuscular tissues control voluntary movement in humans and many other living creatures, offering significant advantages in adaptability and robustness as compared to abiotic actuators. The impressive functional capabilities of neuromuscular tissues have inspired researchers to attempt de novo synthesis of the biological motor system via tissue engineering. This article highlights key recent advances in tissue engineering skeletal muscle and discusses promising strategies to control engineered muscle via biological neural networks and abiotic soft electronic interfaces. Challenges associated with cell sourcing, biomaterials design, and scalable precision manufacturing, along with emerging strategies to address those challenges, are presented. Finally, we highlight how engineered neuromuscular tissues have enabled studying, controlling, and deploying them as actuators in a range of real-world applications including drug discovery, regenerative medicine, cellular agriculture, and soft robotics.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. L. Ricotti, B. Trimmer, A.W. Feinberg, R. Raman, K.K. Parker, R. Bashir, M. Sitti, S. Martel, P. Dario, A. Menciassi, Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci. Robot., 2(12), eaaq0495 (2017)

    Article  Google Scholar 

  2. R. Raman, R. Bashir, Biomimicry, biofabrication, and biohybrid systems: The emergence and evolution of biological design. Adv. Healthc. Mater. (2017). https://doi.org/10.1002/adhm.201700496

    Article  Google Scholar 

  3. R. Raman, R. Langer, Biohybrid design gets personal: New materials for patient-specific therapy. Adv. Mater., 1901969 (2019)

  4. M. Badiola-Mateos, A. Hervera, J.A. del Río, J. Samitier, Challenges and future prospects on 3D in vitro modeling of the neuromuscular circuit. Front. Bioeng. Biotechnol. 6, 194 (2018)

    Article  Google Scholar 

  5. R. Sambasivan, S. Tajbakhsh, in Vertebrate Myogenesis (Springer, Berlin, Germany, 2015), vol. 56, pp. 191–213

  6. S.E. Anderson, W.M. Han, V. Srinivasa, M. Mohiuddin, M.A. Ruehle, J.Y. Moon, E. Shin, C.L. San Emeterio, M.E. Ogle, E.A. Botchwey, N.J. Willett, Y.C. Jang, Determination of a critical size threshold for volumetric muscle loss in the mouse quadriceps. Tissue Eng. Part C Methods 25, 59 (2019)

    CAS  Article  Google Scholar 

  7. J. Liu, D. Saul, K.O. Böker, J. Ernst, W. Lehman, A.F. Schilling, Current methods for skeletal muscle tissue repair and regeneration. Biomed Res. Int. 2018 (2018). https://doi.org/10.1155/2018/1984879

    Article  Google Scholar 

  8. W. Bian, N. Bursac, Tissue engineering of functional skeletal muscle: Challenges and recent advances. IEEE Eng. Med. Biol. Mag. 27, 109 (2008)

    Article  Google Scholar 

  9. S. Ostrovidov, V. Hosseini, S. Ahadian, T. Fujie, S.P. Parthiban, M. Ramalingam, H. Bae, H. Kaji, A. Khademhosseini, Skeletal muscle tissue engineering: Methods to form skeletal myotubes. Tissue Eng. Part B Rev. 20(5), 403 (2014)

    Article  Google Scholar 

  10. J. Gilbert-Honick, W. Grayson, Vascularized and innervated skeletal muscle tissue engineering. Adv. Healthc. Mater. 9(1), 1900626 (2020)

    CAS  Article  Google Scholar 

  11. W. Bian, B. Liau, N. Badie, N. Bursac, Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat. Protoc. 4, 1522 (2009)

    CAS  Article  Google Scholar 

  12. R. Raman, C. Cvetkovic, R. Bashir, A modular approach to the design, fabrication, and characterization of muscle-powered biological machines. Nat. Protoc. 12, 519 (2017)

    CAS  Article  Google Scholar 

  13. R. Raman, Modeling muscle. Science 80(6431), 1051 (2019)

    Article  CAS  Google Scholar 

  14. P. Bajaj, B. Reddy, L. Millet, C. Wei, P. Zorlutuna, G. Bao, R. Bashir, Patterning the differentiation of C2C12 skeletal myoblasts. Integr. Biol. 3, 897 (2011)

    CAS  Article  Google Scholar 

  15. R. Raman, R. Bashir, Stereolithographic 3D Bioprinting for Biomedical Applications (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-800972-7/00006-2)

  16. S. Ostrovidov, S. Salehi, M. Costantini, K. Suthiwanich, M. Ebrahimi, R.B. Sadeghian, T. Fujie, X. Shi, S. Cannata, C. Gargioli, A. Tamayol, M.R. Dokmeci, G. Orive, W. Swieszkowski, A. Khademhosseini, 3D bioprinting in skeletal muscle tissue engineering. Small 15(24), 1805530 (2019)

    Article  CAS  Google Scholar 

  17. S.-H. Lee, J.J. Moon, J.L. West, Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962 (2008)

    CAS  Article  Google Scholar 

  18. R. Raman, B. Bhaduri, M. Mir, A. Shkumatov, M.K. Lee, G. Popescu, H. Kong, R. Bashir, High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 201500721 (2015)

  19. R. Raman, N.E. Clay, S. Sen, M. Melhem, E. Qin, H. Kong, R. Bashir, 3D printing enables separation of orthogonal functions within a hydrogel particle. Biomed. Microdevices 18, 49 (2016)

    Article  CAS  Google Scholar 

  20. J.A.S. Neiman, R. Raman, V. Chan, M.G. Rhoads, M.S.B. Raredon, J.J. Velazquez, R.L. Dyer, R. Bashir, P.T. Hammond, L.G. Griffith, Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol. Bioeng. 112, 777 (2015)

    CAS  Article  Google Scholar 

  21. T.J. Hinton, Q. Jallerat, R.N. Palchesko, J.H. Park, M.S. Grodzicki, H. Shue, M.H. Ramadan, A.R. Hudson, A.W. Feinberg, Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1(9), e1500758 (2015)

    Article  CAS  Google Scholar 

  22. M.A. Skylar-Scott, S.G.M. Uzel, L.L. Nam, J.H. Ahrens, R.L. Truby, S. Damaraju, J.A. Lewis, Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5(9), eaaw2459 (2019)

    CAS  Article  Google Scholar 

  23. A. Lee, A.R. Hudson, D.J. Shiwarski, J.W. Tashman, T.J. Hinton, S. Yerneni, J.M. Bliley, P.G. Campbell, A.W. Feinberg, 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482 (2019)

    CAS  Article  Google Scholar 

  24. J.P.K. Armstrong, J.L. Puetzer, A. Serio, A.G. Guex, M. Kapnisi, A. Breant, Y. Zong, V. Assal, S.C. Skaalure, O. King, T. Murty, C. Meinert, A.C. Franklin, P.G. Bassindale, M.K. Nichols, C.M. Terracciano, D.W. Hutmacher, B.W. Drinkwater, T.J. Klein, A.W. Perriman, M.M. Stevens, Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 30, 1802649 (2018)

    Article  CAS  Google Scholar 

  25. G.J. Pagan-Diaz, X. Zhang, L. Grant, Y. Kim, O. Aydin, C. Cvetkovic, E. Ko, E. Solomon, J. Hollis, H. Kong, Simulation and fabrication of stronger, larger, and faster walking biohybrid machines. Adv. Funct. Mater. 28(23), 1801145 (2018)

    Article  CAS  Google Scholar 

  26. M. Juhas, G.C. Engelmayr, A.N. Fontanella, G.M. Palmer, N. Bursac, Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc. Nat. Acad. Sci. USA 111, 5508 (2014)

    CAS  Article  Google Scholar 

  27. M. Quarta, J.O. Brett, R. DiMarco, A. De Morree, S.C. Boutet, R. Chacon, M.C. Gibbons, V.A. Garcia, J. Su, J.B. Shrager, S. Heilshorn, T.A. Rando, An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat. Biotechnol. 34, 752 (2016)

    CAS  Article  Google Scholar 

  28. S.M. Maffioletti, S. Sarcar, A.B.H. Henderson, I. Mannhardt, L. Pinton, L.A. Moyle, H. Steele-Stallard, O. Cappellari, K.E. Wells, G. Ferrari, J.S. Mitchell, G.E. Tyzack, V.N. Kotiadis, M. Khedr, M. Ragazzi, W. Wang, M.R. Duchen, R. Patani, P.S. Zammit, D.J. Wells, T. Eschenhagen, F.S. Tedesco, Three-dimensional human iPSC-derived artificial skeletal muscles model muscular dystrophies and enable multilineage tissue engineering. Cell Rep. 23, 899 (2018)

    CAS  Article  Google Scholar 

  29. E.A. Aisenbrey, W.L. Murphy, Synthetic alternatives to matrigel. Nat. Rev. Mater. (2020). https://doi.org/10.1038/s41578-020-0199-8

    Article  Google Scholar 

  30. W.M. Han, S.E. Anderson, M. Mohiuddin, D. Barros, S.A. Nakhai, E. Shin, I.F. Amaral, A.P. Pêgo, A.J. García, Y.C. Jang, Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Sci. Adv. 4 (2018). https://doi.org/10.1126/sciadv.aar4008

    Article  Google Scholar 

  31. M.T. Wolf, C.L. Dearth, S.B. Sonnenberg, E.G. Loboa, S.F. Badylak, Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv. Drug Deliv. Rev. 84, 208 (2015)

    CAS  Article  Google Scholar 

  32. E. Anitua, P. Nurden, R. Prado, A.T. Nurden, S. Padilla, Autologous fibrin scaffolds: When platelet- and plasma-derived biomolecules meet fibrin. Biomaterials 192, 440 (2019)

    CAS  Article  Google Scholar 

  33. S.S. Novakova, B.L. Rodriguez, E.E. Vega-Soto, G.P. Nutter, R.E. Armstrong, P.C.D. Macpherson, L.M. Larkin, Repairing volumetric muscle loss in the ovine peroneus tertius following a 3-month recovery. Tissue Eng. Part A 26, 837 (2020)

    CAS  Article  Google Scholar 

  34. R. Raman, C. Cvetkovic, S.G.M. Uzel, R.J. Platt, P. Sengupta, R.D. Kamm, Optogenetic skeletal muscle-powered adaptive biological machines. Proc. Nat. Acad. Sci. USA (2016). https://doi.org/10.1073/pnas.1516139113

    Article  Google Scholar 

  35. S.G.M. Uzel, R.J. Platt, V. Subramanian, T.M. Pearl, C.J. Rowlands, V. Chan, L.A. Boyer, P.T.C. So, R.D. Kamm, Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Sci. Adv. 2(8), e1501429 (2016)

    Article  Google Scholar 

  36. M.A. Bakooshli, E.S. Lippmann, B. Mulcahy, N. Iyer, C.T. Nguyen, K. Tung, B.A. Stewart, H. Van Den Dorpel, T. Fuehrmann, M. Shoichet, A. Bigot, E. Pegoraro, H. Ahn, H. Ginsberg, M. Zhen, R.S. Ashton, P.M. Gilbert, A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. eLife. 8, e44530 (2019)

    CAS  Article  Google Scholar 

  37. J. Andersen, O. Revah, Y. Miura, N. Thorn, N.D. Amin, K.W. Kelley, M. Singh, X. Chen, M.V. Thete, E.M. Walcxak, H. Vogel, H.C. Fan, S.P. Pasca, Generation of functional human 3D cortico-motor assembloids. Cell 183(7), 1913 (2020)

    CAS  Article  Google Scholar 

  38. X. Guo, A. Colon, N. Akanda, S. Spradling, M. Stancescu, C. Martin, J.J. Hickman, Tissue engineering the mechanosensory circuit of the stretch reflex arc with human stem cells: Sensory neuron innervation of intrafusal muscle fibers. Biomaterials. 122, 179 (2017)

    CAS  Article  Google Scholar 

  39. A. Colón, X. Guo, N. Akanda, Y. Cai, J. J. Hickman, Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci. Rep. 7, 17202 (2017)

    Article  CAS  Google Scholar 

  40. C. Cvetkovic, M.H. Rich, R. Raman, H. Kong, R. Bashir, A 3D-printed platform for modular neuromuscular motor units. Microsyst. Nanoeng. 3, 17015 (2017)

    Article  Google Scholar 

  41. J.A. Frank, M.J. Antonini, P. Anikeeva, Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013 (2019)

    CAS  Article  Google Scholar 

  42. R. Raman, E.B. Rousseau, M. Wade, A. Tong, M.J. Cotler, J. Kuang, A.A. Lugo, E. Zhang, A.M. Graybiel, F.M. White, R. Langer, M.J. Cima, Platform for micro-invasive membrane-free biochemical sampling of brain interstitial fluid. Sci. Adv. 6(39), eabb657 (2020)

    Article  CAS  Google Scholar 

  43. M.J. Cotler, E.B. Rousseau, K.B. Ramadi, J. Fang, A.M. Graybiel, R. Langer, M.J. Cima, Steerable micro-invasive probes for localized delivery to deep tissue. Small 15(37), e1901459 (2019)

    Article  CAS  Google Scholar 

  44. D. Afanasenkau, D. Kalinina, V. Lyakhovetskii, C. Tondera, O. Gorsky, S. Moosavi, N. Pavlova, N. Merkulyeva, A.V. Kalueff, Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat. Biomed. Eng. (2020). https://doi.org/10.1038/s41551-020-00615-7

    Article  Google Scholar 

  45. Y.S. Choi, Y.-Y. Hsueh, J. Koo, Q. Yang, R. Avila, B. Hu, Z. Xie, G. Lee, Z. Ning, C. Liu, Y. Xu, Y.J. Lee, W. Zhao, J. Fang, Y. Deng, S. Lee, A. Vazquez-Guardado, I. Stepien, Y. Yan, J.W. Song, C. Haney, Y.S. Oh, W. Liu, H.-J. Yun, A. Banks, M.R. MacEwan, G.A. Ameer, W.Z. Ray, Y. Huang, T. Xie, C.K. Franz, S. Li, J.A. Rogers, Nat. Commun. (forthcoming). https://doi.org/10.1038/s41467-020-19660-6

  46. Y. Liu, J. Li, S. Song, J. Kang, Y. Tsao, S. Chen, V. Mottini, K. McConnell, W. Xu, Y.-Q. Zheng, J.B.-H. Tok, P.M. George, Z. Bao, Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031 (2020)

    CAS  Article  Google Scholar 

  47. Y. Kim, G. Pagan-Diaz, L. Gapinske, Y. Kim, J. Suh, E. Solomon, J.F. Harris, S.W. Nam, R. Bashir, Integration of graphene electrodes with 3D skeletal muscle tissue models. Adv. Healthc. Mater. 9(4), 1901137 (2020)

    CAS  Article  Google Scholar 

  48. V. Chan, R. Raman, C. Cvetkovic, R. Bashir, Enabling microscale and nanoscale approaches for bioengineered cardiac tissue. ACS Nano 7, 1830 (2013)

    CAS  Article  Google Scholar 

  49. A. Kalmykov, C. Huang, J. Bliley, D. Shiwarski, J. Tashman, A. Abdullah, S.K. Rastogi, S. Shukla, E. Mataev, A.W. Feinberg, K. Jimmy Hsia, T. Cohen-Karni, Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv. 5 (2019). https://doi.org/10.1126/sciadv.aax0729

    Article  Google Scholar 

  50. F. Sun, Q. Lu, S. Feng, T. Zhang, Flexible artificial sensory systems based on neuromorphic devices (2021). https://doi.org/10.1021/acsnano.0c10049

    Article  Google Scholar 

  51. S.M. Won, E. Song, J.T. Reeder, J.A. Rogers, Emerging modalities and implantable technologies for neuromodulation. Cell 181, 115 (2020)

    CAS  Article  Google Scholar 

  52. R. Raman, L. Grant, Y. Seo, C. Cvetkovic, M. Gapinske, A. Palasz, H. Dabbous, H. Kong, P.P. Pinera, R. Bashir, Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 6(12), 1700030 (2017)

    Article  CAS  Google Scholar 

  53. J. Chal, M. Oginuma, Z. Al Tanoury, B. Gobert, O. Sumara, A. Hick, F. Bousson, Y. Zidouni, C. Mursch, P. Moncuquet, O. Tassy, S. Vincent, A. Miyanari, A. Bera, J.M. Garnier, G. Guevara, M. Hestin, L. Kennedy, S. Hayashi, B. Drayton, T. Cherrier, B. Gayraud-Morel, E. Gussoni, F. Relaix, S. Tajbakhsh, O. Pourquie, Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33, 962 (2015)

    CAS  Article  Google Scholar 

  54. T. Osaki, S.G.M. Uzel, R.D. Kamm, Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci. Adv. 4, eaat5847 (2018)

    CAS  Article  Google Scholar 

  55. S. Das, K.D. Browne, F.A. Laimo, J.C. Maggiore, M.C. Hilman, H. Kaisaier, C.A. Aguilar, Z.S. Ali, F. Mourkioti, D.K. Cullen, Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss. Commun. Biol. 3, 330 (2020)

    CAS  Article  Google Scholar 

  56. J.H. Kim, I. Kim, Y.-J. Seol, I.K. Ko, J.J. Yoo, A. Atala, S.J. Lee, Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat. Commun. (2020). https://doi.org/10.2307/3408629

    Article  Google Scholar 

  57. C.S. Russell, A. Mostafavi, J.P. Quint, A.C. Panayi, K. Baldino, T.J. Williams, J.G. Daubendiek, V. Hugo Sánchez, Z. Bonick, M. Trujillo-Miranda, S.R. Shin, O. Pourquie, S. Salehi, I. Sinha, A. Tamayol, In situ printing of adhesive hydrogel scaffolds for the treatment of skeletal muscle injuries. ACS Appl. Bio Mater. 3, 1568 (2020)

    CAS  Article  Google Scholar 

  58. M.J. Post, S. Levenberg, D.L. Kaplan, N. Genovese, J. Fu, C.J. Bryant, N. Negowetti, K. Verzijden, P. Moutsatsou, Scientific, sustainability, and regulatory challenges of cultured meat. Nat. Food 1, 403 (2020)

    Article  Google Scholar 

  59. N. Stephens, L. Di Silvio, I. Dunsford, M. Ellis, A. Glencross, A. Sexton, Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78, 155 (2018)

    CAS  Article  Google Scholar 

  60. C.S. Mattick, A.E. Landis, B.R. Allenby, N.J. Genovese, Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environ. Sci. Technol. 49, 11941 (2015)

    CAS  Article  Google Scholar 

  61. T. Ben-Arye, S. Levenberg, Tissue engineering for clean meat production. Front. Sustain. Food Syst. 3, 46 (2019)

    Article  Google Scholar 

  62. G. Zhang, X. Zhao, X. Li, G. Du, J. Zhou, J. Chen, Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci. Technol. 97, 443 (2020)

    Article  CAS  Google Scholar 

  63. S.J. Allan, P.A. De Bank, M.J. Ellis, Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Front. Sustain. Food Syst. 3 (2019). https://doi.org/10.3389/fsufs.2019.00044

    Article  Google Scholar 

  64. L. Specht, An analysis of culture medium costs and production volumes for cell-based meat. Good Food Institute (2019). https://www.gfi.org/files/sci.../clean-meat-production-volume-and-medium-cost.pdf

  65. V. Bodiou, P. Moutsatsou, M.J. Post, Microcarriers for upscaling cultured meat production. Front. Nutr. 7, 10 (2020)

    Article  CAS  Google Scholar 

  66. L.A. Macqueen, C.G. Alver, C.O. Chantre, S. Ahn, L. Cera, G.M. Gonzalez, B.B.O. Connor, D.J. Drennan, M.M. Peters, S.E. Motta, J.F. Zimmerman, K.K. Parker, Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. npj Sci. Food 3, 20 (2019)

  67. T. Ben-Arye, Y. Shandalov, S. Ben-Shaul, S. Landau, Y. Zagury, I. Ianovici, N. Lavon, S. Levenberg, Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food 1, 210 (2020)

  68. Y.-W. Cheng, D.J. Shiwarski, R.L. Ball, K.A. Whitehead, A.W.W. Feinberg, Engineering aligned skeletal muscle tissue using decellularized plant-derived scaffolds. ACS Biomater. Sci. Eng. (2020). https://doi.org/10.1021/acsbiomaterials.0c00058

    Article  Google Scholar 

  69. S. Verbruggen, D. Luining, A. van Essen, M.J. Post, Bovine myoblast cell production in a microcarriers-based system. Cytotechnology 70, 503 (2018)

    CAS  Article  Google Scholar 

  70. K.D. Fish, N.R. Rubio, A.J. Stout, J.S.K. Yuen, D.L. Kaplan, Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci. Technol. 98, 53 (2020)

    CAS  Article  Google Scholar 

  71. N. Rubio, I. Datar, D. Stachura, D. Kaplan, K. Krueger, Cell-based fish: A novel approach to seafood production and an opportunity for cellular agriculture. Front. Sustain. Food Syst. 3, 43 (2019)

    Article  Google Scholar 

  72. N.R. Rubio, K.D. Fish, B.A. Trimmer, D.L. Kaplan, Possibilities for engineered insect tissue as a food source. Front. Sustain. Food Syst. 3, 24 (2019)

    Article  Google Scholar 

  73. L. Grant, R. Raman, C. Cvetkovic, M.C. Ferrall-Fairbanks, G.J. Pagan-Diaz, P. Hadley, E. Ko, M.O. Platt, R. Bashir, Tissue Eng. Part A (forthcoming). https://doi.org/10.1089/ten.TEA.2018.0202

  74. E. Hertafeld, C. Zhang, Z. Jin, A. Jakub, K. Russell, Y. Lakehal, K. Andreyeva, S.N. Bangalore, J. Mezquita, J. Blutinger, H. Lipson, Multi-material three-dimensional food printing with simultaneous infrared cooking. 3D Print. Addit. Manuf. 6, 13 (2019)

    Article  Google Scholar 

  75. K. Jakab, F. Marga, R. Kaesser, T.-H. Chuang, H. Varadaraju, D. Cassingham, S. Lee, A. Forgacs, G. Forgacs, Non-medical applications of tissue engineering: biofabrication of a leather-like material. Mater. Today Sustain. 5, 100018 (2019)

    Article  Google Scholar 

  76. C. Bryant, C. Dillard, The impact of framing on acceptance of cultured meat. Front. Nutr. 6, 103 (2019)

    Article  Google Scholar 

  77. D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467 (2015)

    CAS  Article  Google Scholar 

  78. S.I. Rich, R.J. Wood, C. Majidi, Untethered soft robotics. Nat. Electron. 1, 102 (2018)

    Article  Google Scholar 

  79. C. Appiah, C. Arndt, K. Siemsen, A. Heitmann, A. Staubitz, C. Selhuber‐Unkel, Living materials herald a new era in soft robotics. Adv. Mater. 1807747 (2019)

  80. B.A. Trimmer, Metal or muscle? The future of biologically inspired robots. Sci. Robot. 5, eaba6149 (2020)

    Article  Google Scholar 

  81. V.A. Webster-Wood, O. Akkus, U.A. Gurkan, H.J. Chiel, R.D. Quinn, Organismal engineering: Toward a robotic taxonomic key for devices using organic materials. Sci. Robot. 2(12), eaap9281 (2017)

    Article  Google Scholar 

  82. H. Herr, R.G. Dennis, A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehabil. 1, 6 (2004)

    Article  Google Scholar 

  83. C. Cvetkovic, R. Raman, V. Chan, B.J. Williams, M. Tolish, P. Bajaj, M.S. Sakar, H.H. Asada, M.T.A. Saif, R. Bashir, Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Nat. Acad. Sci. USA 111, 10125 (2014)

    CAS  Article  Google Scholar 

  84. Z. Li, Y. Seo, O. Aydin, M. Elhebeary, R.D. Kamm, H. Kong, M.T.A. Saif, Biohybrid valveless pump-bot powered by engineered skeletal muscle. Proc. Nat. Acad. Sci. USA 201817682 (2019)

  85. Y. Akiyama, T. Sakuma, K. Funakoshi, T. Hoshino, K. Iwabuchi, K. Morishima, Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab Chip (2013). https://doi.org/10.1039/C3LC50490E

    Article  Google Scholar 

  86. O. Aydin, X. Zhang, S. Nuethong, G.J. Pagan-Diaz, R. Bashir, M. Gazzola, M.T.A. Saif, Neuromuscular actuation of biohybrid motile bots. Proc. Nat. Acad. Sci. USA 201907051 (2019)

  87. R. Raman, T. Hua, D. Gwynne, J. Collins, S. Tamang, V. Soares, T. Esfandiary, J. Zhou, S. Pajovic, A. Hayward, R. Langer, G. Traverso, Light-degradable hydrogels as dynamic triggers in gastrointestinal applications. Sci. Adv. 6(3), eaay0065 (2020)

    CAS  Article  Google Scholar 

  88. B.A. Badeau, M.P. Comerford, C.K. Arakawa, J.A. Shadish, C.A. DeForest, Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. (2018). https://doi.org/10.1038/nchem.2917

    Article  Google Scholar 

  89. R. Raman, M. Mitchell, P. Perez-Pinera, R. Bashir, L. DeStefano, Design and integration of a problem-based biofabrication course into an undergraduate biomedical engineering curriculum. J. Biol. Eng. 10, 1 (2016)

    Article  Google Scholar 

  90. M. Sample, M. Boulicault, C. Allen, R. Bashir, I. Hyun, M. Levis, C. Lowenthal, D. Mertz, N. Montserrat, M.J. Palmer, K. Saha, J. Zartman, Multi-cellular engineered living systems: Building a community around responsible research on emergence. Biofabrication (2019). https://doi.org/10.1088/1758-5090/ab268c

    Article  Google Scholar 

  91. R.D. Kamm, R. Bashir, N. Arora, R.D. Dar, M.U. Gillette, L.G. Griffith, M.L. Kemp, K. Kinlaw, M. Levin, A.C. Martin, T.C. McDevitt, R.M. Nerem, M.J. Powers, T.A. Saif, J. Sharpe, S. Takayama, S. Takeuchi, R. Weiss, K. Ye, H.G. Yevick, M.H. Zaman, Perspective: The promise of multi-cellular engineered living systems. APL Bioeng. 2, 040901 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the Jiang Family Foundation and the MTI Corporation for their generous contributions in support of the MRS Bulletin Postdoctoral Publication Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Raman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raman, R. Engineered neuromuscular actuators for medicine, meat, and machines. MRS Bulletin 46, 522–533 (2021). https://doi.org/10.1557/s43577-021-00122-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00122-3

Keywords

  • Biomaterial
  • Biomedical
  • Biological
  • Actuation
  • Robotics