Silk nanocoatings of mammalian cells for cytoprotection against mechanical stress

Abstract

Mammalian cells are widely used in biotechnology and regenerative medicine applications, including recombinant protein production, cell therapy, 3D bioprinting, and ex vivo engineering of tissues and organs. Unlike unicellular organisms, fungi, or plants, animal cells lack a protective cell wall, and therefore are more sensitive to processing conditions, particularly mechanical forces. Hydrodynamic forces during capillary flow can damage the plasma membrane and impact cell viability and functions, limiting the yields of protein production or the success of injection-based cell delivery and 3D bioprinting of artificial tissues and organs. Here, we present nanocoating individual murine fibroblasts as a model organism with silk-based artificial cell walls to protect against mechanical stress. Cells were coated with three bilayers of silk polyelectrolytes through layer-by-layer electrostatic deposition and subjected to mechanical stress by extrusion through needles with small inner diameters or shearing using a rheometer. The silk nanocoatings preserved membrane integrity, cell survival, and proliferation after exposure to stress in viscous polyethylene glycol solution, providing a useful strategy for cytoprotection during cell delivery and 3D bioprinting applications.

Impact statement

Use of mammalian cells is a necessity in the industrial production of biopharmaceuticals because of proper protein folding through chaperone systems and post-translational modifications such as glycosylation being essential for functional products. Moreover, transplantation of human cells holds great promise in regeneration of serious injuries in the bone, brain, or spinal cord as well as debilitating diseases such as stroke, diabetes, arterial dysfunctions, and cancers. Cell delivery by direct injection or within 3D-printed scaffolds with well-defined, patient-specific geometry and composition has potential in filling the gap of insufficient organ transplantation. Both the delivery of mammalian cells into a bioreactor through transfer pipes or cell extrusion through fine needles or nozzles for injection-based delivery or bioprinting, however, may expose the cells to extremes of mechanical stress that impair cell viability and reduce the yield of production or overall success of the transplantation therapy. The silk nanocoatings on individual cells demonstrated in this study acted as artificial cell walls for mammalian cells and provided protection against mechanical stress during capillary flow or exposure to a constant shear force and significantly limited the loss of membrane integrity and necrotic or apoptotic cell death. The safety and simplicity of the approach involving protein-based, biocompatible silk fibroin processed through organic solvent-free, nature-friendly modification pathways allows for rapid translation in biotechnology and regenerative medicine to improve cell delivery applications.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    A.C. Dalton, W.A. Barton, Over-expression of secreted proteins from mammalian cell lines. Protein Sci. 23, 517 (2014)

    CAS  Article  Google Scholar 

  2. 2.

    M.E. Lalonde, Y. Durocher, Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 251, 128 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    A. Richelle, N.E. Lewis, Improvements in protein production in mammalian cells from targeted metabolic engineering. Curr. Opin. Syst. Biol. 6, 1 (2017)

    Article  Google Scholar 

  4. 4.

    D. Bojar, M. Fussenegger, The role of protein engineering in biomedical applications of mammalian synthetic biology. Small 16, e1903093 (2020)

    Article  CAS  Google Scholar 

  5. 5.

    B. Zoro, S. Owen, R. Drake, M. Hoare, The impact of process stress on suspended anchorage-dependent mammalian cells as an indicator of likely challenges for regenerative medicines. Biotechnol. Bioeng. 99, 468 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    C. Born, Z. Zhang, M. Al-Rubeai, C. Thomas, Estimation of disruption of animal cells by laminar shear stress. Biotechnol. Bioeng. 40, 1004 (1992)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Chisti, Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21, 67 (2001)

    CAS  Article  Google Scholar 

  8. 8.

    E.Y. Fok, P.W. Zandstra, Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 23, 1333 (2005)

    CAS  Article  Google Scholar 

  9. 9.

    G. Yourek, S.M. McCormick, J.J. Mao, G.C. Reilly, Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen. Med. 5, 713 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    G. Uzer, R.K. Fuchs, J. Rubin, W.R. Thompson, Concise review: Plasma and nuclear membranes convey mechanical information to regulate mesenchymal stem cell lineage. Stem Cells 34, 1455 (2016)

    Article  Google Scholar 

  11. 11.

    N. Perez Gonzalez, J. Tao, N.D. Rochman, D. Vig, E. Chiu, D. Wirtz, S.X. Sun, Cell tension and mechanical regulation of cell volume. Mol. Biol. Cell 29, 21 (2018)

    Article  Google Scholar 

  12. 12.

    M.P. Stewart, R. Langer, K.F. Jensen, Intracellular delivery by membrane disruption: Mechanisms, strategies, and concepts. Chem. Rev. 118, 7409 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    R.S. Senger, M.N. Karim, Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol. Prog. 19, 1199 (2003)

    CAS  Article  Google Scholar 

  14. 14.

    M.I.S. Cervantes, J. Lacombe, F.J. Muzzio, M.M. Álvarez, Novel bioreactor design for the culture of suspended mammalian cells. Part I: Mixing characterization. Chem. Eng. Sci. 61, 8075 (2006)

    Article  CAS  Google Scholar 

  15. 15.

    H. Zhang, W. Wang, C. Quan, S. Fan, Engineering considerations for process development in mammalian cell cultivation. Curr. Pharm. Biotechnol. 11, 103 (2010)

    CAS  Article  Google Scholar 

  16. 16.

    A.C. Rayat, A. Chatel, M. Hoare, G.J. Lye, Ultra scale-down approaches to enhance the creation of bioprocesses at scale: Impacts of process shear stress and early recovery stages. Curr. Opin. Chem. Eng. 14, 150 (2016)

    Article  Google Scholar 

  17. 17.

    R.S. Riley, C.H. June, R. Langer, M.J. Mitchell, Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    M.L. Lumeng Luo, X. Zhuang, Q. Zhang, T. Qiao, Irradiation increases the immunogenicity of lung cancer cells and irradiation-based tumor cell vaccine elicits tumor-specific T cell responses in vivo. Onco Targets Ther. 12, 3805 (2019)

    Article  Google Scholar 

  19. 19.

    B.A. Aguado, W. Mulyasasmita, J. Su, K.J. Lampe, S.C. Heilshorn, Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18, 806 (2012)

    CAS  Article  Google Scholar 

  20. 20.

    M.H. Amer, F.R. Rose, L.J. White, K.M. Shakesheff, A detailed assessment of varying ejection rate on delivery efficiency of mesenchymal stem cells using narrow-bore needles. Stem Cells Transl. Med. 5, 366 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    B. Wahlberg, H. Ghuman, J.R. Liu, M. Modo, Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery. Sci. Rep. 8, 9194 (2018)

    Article  CAS  Google Scholar 

  22. 22.

    J. Müller-Ehmsen, P. Whittaker, R.A. Kloner, J.S. Dow, T. Sakoda, T.I. Long, P.W. Laird, L. Kedes, Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell. Cardiol. 34, 107 (2002)

    Article  CAS  Google Scholar 

  23. 23.

    D. Kondziolka, G.K. Steinberg, L. Wechsler, C.C. Meltzer, E. Elder, J. Gebel, S. DeCesare, T. Jovin, R. Zafonte, J. Lebowitz, Neurotransplantation for patients with subcortical motor stroke: A phase 2 randomized trial. J. Neurosurg. 103, 38 (2005)

    Article  Google Scholar 

  24. 24.

    P.C. Dromel, D. Singh, A. Alexander-Katz, M. Kurisawa, M. Spector, M. Young, Injectable gelatin hydroxyphenyl propionic acid hydrogel protects human retinal progenitor cells (hRPCs) from shear stress applied during small-bore needle injection. Appl. Mater. Today 19, 100602 (2020)

    Article  Google Scholar 

  25. 25.

    T. Tanzeglock, M. Soos, G. Stephanopoulos, M. Morbidelli, Induction of mammalian cell death by simple shear and extensional flows. Biotechnol. Bioeng. 104, 360 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Chisti, Shear Sensitivity, in Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology (Wiley, New York, 2009), pp. 1–40

  27. 27.

    I.T. Ozbolat, Y. Yu, Bioprinting toward organ fabrication: Challenges and future trends. IEEE Trans. Biomed. Eng. 60, 691 (2013)

    Article  Google Scholar 

  28. 28.

    S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    Y.S. Zhang, K. Yue, J. Aleman, K.M. Moghaddam, S.M. Bakht, J. Yang, W. Jia, V. Dell’Erba, P. Assawes, S.R. Shin, M.R. Dokmeci, R. Oklu, A. Khademhosseini, 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45, 148 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong, M. Xing, 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 3, 144 (2018)

    Article  Google Scholar 

  31. 31.

    K. Nair, M. Gandhi, S. Khalil, K.C. Yan, M. Marcolongo, K. Barbee, W. Sun, Characterization of cell viability during bioprinting processes. Biotechnol. J. 4, 1168 (2009)

    CAS  Article  Google Scholar 

  32. 32.

    K.C. Yan, K. Paluch, K. Nair, W. Sun, Effects of process parameters on cell damage in a 3D cell printing process, in Imece2009: Proceedings of the Asme International Mechanical Engineering Congress and Exposition, 2, 75 (2010)

  33. 33.

    Y. Yu, Y.H. Zhang, J.A. Martin, I.T. Ozbolat, Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J. Biomech. Eng. 135(9), 91011 (2013)

    Article  Google Scholar 

  34. 34.

    L. Ouyang, R. Yao, Y. Zhao, W. Sun, Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8, (2016)

    Article  CAS  Google Scholar 

  35. 35.

    M. Li, X. Tian, J.A. Kozinski, X. Chen, D.K. Hwang, Modeling mechanical cell damage in the bioprinting process employing a conical needle. J. Mech. Med. Biol. 15(5), 1550073 (2015)

    Article  Google Scholar 

  36. 36.

    A. Forget, A. Blaeser, F. Miessmer, M. Kopf, D.F.D. Campos, N.H. Voelcker, A. Blencowe, H. Fischer, V.P. Shastri, Mechanically tunable bioink for 3D bioprinting of human cells. Adv. Healthc. Mater. 6(20), 1700255 (2017)

    Article  CAS  Google Scholar 

  37. 37.

    C.-J. Chen, H. Kono, D. Golenbock, G. Reed, S. Akira, K.L. Rock, Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851 (2007)

    CAS  Article  Google Scholar 

  38. 38.

    K.L. Rock, H. Kono, The inflammatory response to cell death. Annu. Rev. Pathol. Mech. Dis. 3, 99 (2008)

    CAS  Article  Google Scholar 

  39. 39.

    M. Sachet, Y.Y. Liang, R. Oehler, The immune response to secondary necrotic cells. Apoptosis 22, 1189 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    S. Krol, S. del Guerra, M. Grupillo, A. Diaspro, A. Gliozzi, P. Marchetti, Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 6, 1933 (2006)

    CAS  Article  Google Scholar 

  41. 41.

    Z.L. Zhi, B. Liu, P.M. Jones, J.C. Pickup, Polysaccharide multilayer nanoencapsulation of insulin-producing beta-cells grown as pseudoislets for potential cellular delivery of insulin. Biomacromolecules 11, 610 (2010)

    CAS  Article  Google Scholar 

  42. 42.

    A.J. Ryan, H.S. O’Neill, G.P. Duffy, F.J. O’Brien, Advances in polymeric islet cell encapsulation technologies to limit the foreign body response and provide immunoisolation. Curr. Opin. Pharmacol. 36, 66 (2017)

    CAS  Article  Google Scholar 

  43. 43.

    A. Matsuzawa, M. Matsusaki, M. Akashi, Effectiveness of nanometer-sized extracellular matrix layer-by-layer assembled films for a cell membrane coating protecting cells from physical stress. Langmuir 29, 7362 (2013)

    CAS  Article  Google Scholar 

  44. 44.

    W.T. Zheng, J. Gao, L.J. Song, C.Y. Chen, D. Guan, Z.H. Wang, Z.B. Li, D.L. Kong, Z.M. Yang, Surface-induced hydrogelation inhibits platelet aggregation. J. Am. Chem. Soc. 135, 266 (2013)

    CAS  Article  Google Scholar 

  45. 45.

    C.Y. Liu, M. Matsusaki, M. Akashi, The construction of cell-density controlled three-dimensional tissues by coating micrometer-sized collagen fiber matrices on single cell surfaces. RSC Adv. 4, 46141 (2014)

    CAS  Article  Google Scholar 

  46. 46.

    D. Choi, H. Lee, H.B. Kim, M. Yang, J. Heo, Y. Won, S.S. Jang, J.K. Park, Y. Son, T.I. Oh, E. Lee, J. Hong, Cytoprotective self-assembled RGD peptide nanofilms for surface modification of viable mesenchymal stem cells. Chem. Mater. 29, 2055 (2017)

    CAS  Article  Google Scholar 

  47. 47.

    J. Lee, H. Cho, J. Choi, D. Kim, D. Hong, J.H. Park, S.H. Yang, I.S. Choi, Chemical sporulation and germination: Cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-Fe-III complex. Nanoscale 7, 18918 (2015)

    CAS  Article  Google Scholar 

  48. 48.

    J.Y. Kim, H. Lee, T. Park, J. Park, M.H. Kim, H. Cho, W. Youn, S.M. Kang, I.S. Choi, Artificial spores: Cytocompatible coating of living cells with plant-derived pyrogallol. Chem. Asian J. 11, 3183 (2016)

    CAS  Article  Google Scholar 

  49. 49.

    T. Park, J.Y. Kim, H. Cho, H.C. Moon, B.J. Kim, J.H. Park, D. Hong, J. Park, I.S. Choi, Artificial spores: Immunoprotective nanocoating of red blood cells with supramolecular ferric ion-tannic acid complex. Polymers 9(4), 140 (2017)

    Article  CAS  Google Scholar 

  50. 50.

    S. Sakai, M. Taya, On-cell surface cross-linking of polymer molecules by horseradish peroxidase anchored to cell membrane for individual cell encapsulation in hydrogel sheath. ACS Macro Lett. 3, 972 (2014)

    CAS  Article  Google Scholar 

  51. 51.

    S. Sakai, Y. Liu, M. Sengoku, M. Taya, Cell-selective encapsulation in hydrogel sheaths via biospecific identification and biochemical cross-linking. Biomaterials 53, 494 (2015)

    CAS  Article  Google Scholar 

  52. 52.

    J.M. Yang, J.C. Li, X.L. Wang, X.M. Li, N. Kawazoe, G.P. Chen, Single mammalian cell encapsulation by in situ polymerization. J. Mater. Chem. B 4, 7662 (2016)

    CAS  Article  Google Scholar 

  53. 53.

    H. Kim, K. Shin, O.K. Park, D. Choi, H.D. Kim, S. Baik, S.H. Lee, S.H. Kwon, K.J. Yarema, J. Hong, T. Hyeon, N.S. Hwang, General and facile coating of single cells via mild reduction. J. Am. Chem. Soc. 140, 1199 (2018)

    CAS  Article  Google Scholar 

  54. 54.

    N.G. Veerabadran, P.L. Goli, S.S. Stewart-Clark, Y.M. Lvov, D.K. Mills, Nanoencapsulation of stem cells within polyelectrolyte multilayer shells. Macromol. Biosci. 7, 877 (2007)

    CAS  Article  Google Scholar 

  55. 55.

    Q.H. Zhao, H.S. Li, B.Y. Li, Nanoencapsulating living biological cells using electrostatic layer-by-layer self-assembly: Platelets as a model. J. Mater. Res. 26, 347 (2011)

    CAS  Article  Google Scholar 

  56. 56.

    S. Mansouri, Y. Merhi, F.M. Winnik, M. Tabrizian, Investigation of layer-by-layer assembly of polyelectrolytes on fully functional human red blood cells in suspension for attenuated immune response. Biomacromolecules 12, 585 (2011)

    CAS  Article  Google Scholar 

  57. 57.

    M. Borkowska, E. Godlewska, M. Antosiak-Iwanska, J. Kinasiewicz, M. Strawski, M. Szklarczyk, L.H. Granicka, Suitability of polyelectrolyte shells modified with fullerene derivate for immunoisolation of cells. Experimental study. J. Biomed. Nanotechnol. 8, 912 (2012)

    CAS  Article  Google Scholar 

  58. 58.

    W.Y. Li, T. Guan, X.S. Zhang, Z.Y. Wang, M. Wang, W. Zhong, H. Feng, M. Xing, J.M. Kong, The effect of layer-by-layer assembly coating on the proliferation and differentiation of neural stem cells. ACS Appl. Mater. Interfaces 7, 3018 (2015)

    CAS  Article  Google Scholar 

  59. 59.

    S.T. Zhao, L.L. Zhang, J.F. Han, J.H. Chu, H. Wang, X.L. Chen, Y.W. Wang, N. Tun, L.C. Lu, X.F. Bai, M. Yearsley, S. Devine, X.M. He, J.H. Yu, Conformal nanoencapsulation of allogeneic T cells mitigates graft-versus-host disease and retains graft-versus-leukemia activity. ACS Nano 10, 6189 (2016)

    CAS  Article  Google Scholar 

  60. 60.

    J.M. Yang, J.C. Li, X.M. Li, X.L. Wang, Y.J. Yang, N. Kawazoe, G.P. Chen, Nanoencapsulation of individual mammalian cells with cytoprotective polymer shell. Biomaterials 133, 253 (2017)

    CAS  Article  Google Scholar 

  61. 61.

    D. Choi, J. Park, J. Heo, T.I. Oh, E. Lee, J. Hong, Multifunctional collagen and hyaluronic acid multilayer films on live mesenchymal stem cells. ACS Appl. Mater. Interfaces. 9, 12264 (2017)

    CAS  Article  Google Scholar 

  62. 62.

    W.Y. Li, G.H. Zhang, T. Guan, X.S. Zhang, A. Khosrozadeh, M. Xing, J.M. Kong, Manipulable permeability of nanogel encapsulation on cells exerts protective effect against TNF-alpha-induced apoptosis. ACS Biomater. Sci. Eng. 4, 2825 (2018)

    CAS  Article  Google Scholar 

  63. 63.

    P. Shi, N. Zhao, J. Coyne, Y. Wang, DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun. 10, 2223 (2019)

    Article  CAS  Google Scholar 

  64. 64.

    J.M. Sun, Y.F. Ren, W.B. Wang, H.L. Hao, M.Y. Tang, Z.B. Zhang, J.M. Yang, Y.Q. Zheng, X.N. Shi, Transglutaminase-catalyzed encapsulation of individual mammalian cells with biocompatible and cytoprotective gelatin nanoshells. ACS Biomater. Sci. Eng. 6, 2336 (2020)

    CAS  Article  Google Scholar 

  65. 65.

    C. Jiang, V.V. Tsukruk, Freestanding nanostructures via layer-by-layer assembly. Adv. Mater. 18, 829 (2006)

    CAS  Article  Google Scholar 

  66. 66.

    Z.Y. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 18, 3203 (2006)

    CAS  Article  Google Scholar 

  67. 67.

    J.J. Richardson, M. Bjornmalm, F. Caruso, Technology-driven layer-by-layer assembly of nanofilms. Science 348, 6233 (2015)

    Article  CAS  Google Scholar 

  68. 68.

    O. Hasturk, D.L. Kaplan, Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomater. 95, 3 (2019)

    CAS  Article  Google Scholar 

  69. 69.

    M.B. Oliveira, J. Hatami, J.F. Mano, Coating strategies using layer-by-layer deposition for cell encapsulation. Chem. Asian J. 11, 1753 (2016)

    CAS  Article  Google Scholar 

  70. 70.

    B. Wang, P. Liu, Y.Y. Tang, H.H. Pan, X.R. Xu, R.K. Tang, Guarding embryo development of zebrafish by shell engineering: A strategy to shield life from ozone depletion. PLoS ONE 5(4), e9963 (2010)

    Article  CAS  Google Scholar 

  71. 71.

    W. Youn, E.H. Ko, M.H. Kim, M. Park, D. Hong, G.A. Seisenbaeva, V.G. Kessler, I.S. Choi, Cytoprotective encapsulation of individual Jurkat T cells within durable TiO2 shells for T-cell therapy. Angew. Chem. Int. 56, 10702 (2017)

    CAS  Article  Google Scholar 

  72. 72.

    J. Lee, J. Choi, J.H. Park, M.H. Kim, D. Hong, H. Cho, S.H. Yang, I.S. Choi, Cytoprotective silica coating of individual mammalian cells through bioinspired silicification. Angew. Chem. Int. Ed. 53, 8056 (2014)

    CAS  Article  Google Scholar 

  73. 73.

    O. Hasturk, J.K. Sahoo, D.L. Kaplan, Synthesis and characterization of silk ionomers for layer-by-layer electrostatic deposition on individual mammalian cells. Biomacromolecules 21, 2829 (2020)

    CAS  Article  Google Scholar 

  74. 74.

    Z.Z. Shao, F. Vollrath, Materials: Surprising strength of silkworm silk. Nature 418, 741 (2002)

    CAS  Article  Google Scholar 

  75. 75.

    H.J. Jin, D.L. Kaplan, Mechanism of silk processing in insects and spiders. Nature 424, 1057 (2003)

    CAS  Article  Google Scholar 

  76. 76.

    C. Vepari, D.L. Kaplan, Silk as a biomaterial. Prog. Polym. Sci. 32, 991 (2007)

    CAS  Article  Google Scholar 

  77. 77.

    J.K. Sahoo, J. Choi, O. Hasturk, I. Laubach, M.L. Descoteaux, S. Mosurkal, B. Wang, N. Zhang, D.L. Kaplan, Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomater. Sci. 8, 4176 (2020)

    CAS  Article  Google Scholar 

  78. 78.

    M.A. Garcia-Briones, J.J. Chalmers, Flow parameters associated with hydrodynamic cell injury. Biotechnol. Bioeng. 44, 1089 (1994)

    CAS  Article  Google Scholar 

  79. 79.

    C. Thomas, M. Al-Rubeai, Z. Zhang, Prediction of Mechanical Damage to Animals in Turbulence, in Cell Culture Engineering IV (Springer, Dordrecht, The Netherlands, 1994), pp. 329–335

    Book  Google Scholar 

  80. 80.

    S.H. Mardikar, K. Niranjan, Observations on the shear damage to different animal cells in a concentric cylinder viscometer. Biotechnol. Bioeng. 68, 697 (2000)

    CAS  Article  Google Scholar 

  81. 81.

    J. Snyder, A. Rin Son, Q. Hamid, C. Wang, Y. Lui, W. Sun, Mesenchymal stem cell printing and process regulated cell properties. Biofabrication 7, 044106 (2015)

    Article  Google Scholar 

  82. 82.

    M. Taddei, E. Giannoni, T. Fiaschi, P. Chiarugi, Anoikis: An emerging hallmark in health and diseases. J. Pathol. 226, 380 (2012)

    CAS  Article  Google Scholar 

  83. 83.

    C.B. Rodell, A.L. Kaminski, J.A. Burdick, Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125 (2013)

    CAS  Article  Google Scholar 

  84. 84.

    A. Parisi-Amon, W. Mulyasasmita, C. Chung, S.C. Heilshorn, Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthc. Mater. 2, 428 (2013)

    CAS  Article  Google Scholar 

  85. 85.

    S. Aktas, D.M. Kalyon, B.M. Marín-Santibáñez, J. Pérez-González, Shear viscosity and wall slip behavior of a viscoplastic hydrogel. J. Rheol. 58, 513 (2014)

    CAS  Article  Google Scholar 

  86. 86.

    A.A. Foster, R.E. Dewi, L. Cai, L. Hou, Z. Strassberg, C.A. Alcazar, S.C. Heilshorn, N.F. Huang, Protein-engineered hydrogels enhance the survival of induced pluripotent stem cell-derived endothelial cells for treatment of peripheral arterial disease. Biomater. Sci. 6, 614 (2018)

    CAS  Article  Google Scholar 

  87. 87.

    A. Panwar, L.P. Tan, Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6), 685 (2016)

    Article  CAS  Google Scholar 

  88. 88.

    L. Ning, N. Betancourt, D.J. Schreyer, X. Chen, Characterization of cell damage and proliferative ability during and after bioprinting. ACS Biomater. Sci. Eng. 4, 3906 (2018)

    CAS  Article  Google Scholar 

  89. 89.

    M. Muller, E. Ozturk, O. Arlov, P. Gatenholm, M. Zenobi-Wong, Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng. 45, 210 (2017)

    Article  Google Scholar 

  90. 90.

    S. Kapoor, S.C. Kundu, Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 31, 17 (2016)

    CAS  Article  Google Scholar 

  91. 91.

    F. Rehfeldt, A.J. Engler, A. Eckhardt, F. Ahmed, D.E. Discher, Cell responses to the mechanochemical microenvironment—Implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59, 1329 (2007)

    CAS  Article  Google Scholar 

  92. 92.

    C. Wiegand, U.C. Hipler, Evaluation of biocompatibility and cytotoxicity using keratinocyte and fibroblast cultures. Skin Pharmacol. Physiol. 22, 74 (2009)

    CAS  Article  Google Scholar 

  93. 93.

    K. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, A. Ovsianikov, Bioink properties before, during and after 3D bioprinting. Biofabrication 8, 032002 (2016)

    Article  CAS  Google Scholar 

  94. 94.

    G. Gillispie, P. Prim, J. Copus, J. Fisher, A.G. Mikos, J.J. Yoo, A. Atala, S.J. Lee, Assessment methodologies for extrusion-based bioink printability. Biofabrication 12, 022003 (2020)

    CAS  Article  Google Scholar 

  95. 95.

    B. Reid, M. Gibson, A. Singh, J. Taube, C. Furlong, M. Murcia, J. Elisseeff, PEG hydrogel degradation and the role of the surrounding tissue environment. J. Tissue Eng. Regen. Med. 9, 315 (2015)

    CAS  Article  Google Scholar 

  96. 96.

    J.M. Unagolla, A.C. Jayasuriya, Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today 18, 100479 (2020)

    Article  Google Scholar 

  97. 97.

    D. Chimene, K.K. Lennox, R.R. Kaunas, A.K. Gaharwar, Advanced bioinks for 3D printing: A materials science perspective. Ann. Biomed. Eng. 44, 2090 (2016)

    Article  Google Scholar 

  98. 98.

    M. Li, X. Tian, N. Zhu, D.J. Schreyer, X. Chen, Modeling process-induced cell damage in the biodispensing process. Tissue Eng. Part C Methods 16, 533 (2010)

    CAS  Article  Google Scholar 

  99. 99.

    D.D. Chan, W.S. Van Dyke, M. Bahls, S.D. Connell, P. Critser, J.E. Kelleher, M.A. Kramer, S.M. Pearce, S. Sharma, C.P. Neu, Mechanostasis in apoptosis and medicine. Prog. Biophys. Mol. Biol. 106, 517 (2011)

    CAS  Article  Google Scholar 

  100. 100.

    M. Yokokawa, K. Takeyasu, S. Yoshimura, Mechanical properties of plasma membrane and nuclear envelope measured by scanning probe microscope. J. Microsc. 232, 82 (2008)

    CAS  Article  Google Scholar 

  101. 101.

    A. McQueen, E. Meilhoc, J.E. Bailey, Flow effects on the viability and lysis of suspended mammalian cells. Biotechnol. Lett. 9, 831 (1987)

    CAS  Article  Google Scholar 

  102. 102.

    A. McQueen, J.E. Bailey, Influence of serum level, cell line, flow type and viscosity on flow-induced lysis of suspended mammalian cells. Biotechnol. Lett. 11, 531 (1989)

    Article  Google Scholar 

  103. 103.

    S.S. Lee, Y. Yim, K.H. Ahn, S.J. Lee, Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed. Microdevices 11, 1021 (2009)

    Article  Google Scholar 

  104. 104.

    S. Youn, D.W. Lee, Y.-H. Cho, Cell-deformability-monitoring chips based on strain-dependent cell-lysis rates. J. Microelectromech. Syst. 17, 302 (2008)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH (P41EB027062, R01EB021264, R01NS094218, R01AR070975) and the U.S. Air Force (FA9550-17-1-0333, FA8650-15-D-5405). The authors also acknowledge the Turkish Fulbright Commission for a PhD fellowship to O.H, and would like to thank Dr. Katherine Vorvolakos of the United States Food and Drug Administration and Dr. Zhiyu Xia for valuable suggestions and contributions. Authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2234 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasturk, O., Rodriguez, M.J., Wheeler, J.J. et al. Silk nanocoatings of mammalian cells for cytoprotection against mechanical stress. MRS Bulletin (2021). https://doi.org/10.1557/s43577-021-00114-3

Download citation

Keywords

  • Capillary flow
  • Mammalian cells
  • Mechanical stress
  • Cell nanocoating
  • Silk fibroin